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1.  Introduction

Low temperature plasmas, such as those in gas discharges 
and in industrial plasmas, are usually weakly ionized, so that 
the neutral-gas density and temperature are not significantly 
affected by the plasmas [1–12]. When the power deposited 
in the plasma is increased, or when the neutral pressure is 
low, the plasma modifies the neutral density and temperature. 
Since the plasma dynamics depends on the neutral dynamics, 
the problem of solving for the plasma steady-state becomes 
inherently nonlinear. One result of the nonlinear dynamics 
is that particle balance and power balance become coupled. 
In the linear case, when the neutral density is not modified, 
particle balance is usually sufficient to determine the electron 
temperature, and power balance is employed to determine the 
plasma density. When the nonlinear coupled plasma–neutrals 
dynamics is modeled, particle balance and power balance 
have both to be taken into account in order to solve for the 
electron temperature and for the plasma density.

The main process that follows the coupling of plasma 
and neutral dynamics is neutral gas depletion [13–111], the 
decrease of neutral gas density where the plasma density is 
high, at the discharge center. As is common in the literature, 
neutral gas depletion is termed neutral depletion in this paper. 
Neutral depletion in gas discharges has already been addressed 
theoretically and many features were unfolded in early studies 
[13–26]. Allen and Tonemann related in 1954 the phenomenon 
of current limitation in a low pressure arc to neutral depletion 
[14]. In various models, collisionless neutrals were assumed 
to be ionized while moving ballistically, and the neutrals flow 
was described by moments of the distribution function. The 
first such model for neutral depletion in collisionless plasma 
was derived by Caruso and Cavaliere in 1964 for two counter
streaming monoenergetic neutral beams in a planar geom-
etry [15]. The trajectories of neutral atoms in both planar and 
cylindrical geometries have been examined by Valentini [16] 
and by Torven [17] in 1971. Stangeby and Allen calculated, 
also in 1971, the neutral depletion in a cylindrical geometry 
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considering ionization of neutrals during their ballistic motion 
[18]. The plasma, though, was assumed of a uniform density 
in [18]. In research in the following years, Valentini used the 
Boltzmann equation  to derive equations  for the moments of 
the velocity distributions of both neutrals and ions with aniso
tropic pressures in planar and cylindrical geometries [22]. 
He then closed the hierarchy of fluid equations, by relating 
the heat flux tensor to the pressure tensor [25, 26]. Valentini 
took into consideration that an ion born through ionization had 
initially the velocity of the ionized neutral atom. Some ions 
were therefore shown to move initially toward the center of 
the discharge, against the electric force [23, 24]. The calcu-
lated neutral velocity in cylindrical geometry when plasma was 
assumed collisional was found sometimes to be radially non-
monotonic [25]. Early measurements of neutral depletion are 
summarized in chapter 5.1 of [8].

In recent years, with the growing use of lower pressure and 
higher power radio-frequency (rf) discharges, the importance 
of neutral depletion is becoming fully recognized [27–111]. 
A variety of aspects of neutral depletion have been explored 
experimentally. Boswell et al [27, 28] and Gilland et al [40] 
suggested the possibility of neutral depletion in helicon 
sources. Degeling et al [42] found breathing oscillations that 
were associated with oscillating neutral depletion. Decrease 
of the neutral density [27–40, 48, 68–71, 81, 82], relaxation 
oscillations [42], and neutral-gas heating [54–61, 64, 67, 75, 
81, 82, 87] have been measured. The experiments were often 
accompanied by detailed numerical modeling.

The experimental findings have stimulated renewed theor
etical research [33, 34, 42, 46, 62, 72, 74, 77, 79, 80, 85, 86, 
88–90, 94]. Modeling the full range of processes in such experi-
ments is a difficult task. Often in partially ionized plasmas there 
are several atomic and molecular species. The description of the 
populations of the many excited states can be complex, even in 
a global model [108]. When the spatial dependence is taken into 
account, the analysis is even more complex. When the pressure 
is low, so that neutral collisions are rare, kinetic modeling is 
more accurate than hydrodynamic modeling. Combinations of 
hydrodynamic and Monte Carlo techniques are often used [33, 
34]. For example, in a simulation of an electron cyclotron reso-
nance (ECR) plasma reactor, a direct simulation Monte Carlo 
(DSMC) was employed. The neutral density was indeed found 
to be depleted in the volume of the chamber due to ionization 
and the depletion was enhanced by neutral heating by electron–
neutral and ion–neutral collisions [34].

In this review paper, we examine neutral depletion in low 
temperature plasmas theoretically, under simplifying assump-
tions. The theory used here cannot simulate experiments with 
accuracy, as the abovementioned detailed computational 
models can sometimes do. Our theoretical study with the 
simplifying assumptions, somewhat in the spirit of the early 
theoretical studies, but often with simpler analysis and with 
less detail, enables us to demonstrate characteristic phenom-
ena and (sometimes unexpected) behavior of the plasma under 
neutral depletion. Most of the results described here have been 
published in the last two decades, while some results are new.

We focus on the theoretical analysis of neutral-depleted 
steady-states of low temperature plasmas. We address dis-
charges with one species only, in which the plasma is 

composed of one type of neutrals, (positive) ions all of the 
same degree of ionization, and electrons. Moreover, in order 
to exhibit the various different behaviors of neutral-depleted 
plasma, we treat discharge configurations under idealized 
assumptions about ion and neutral collisionality, and about 
plasma and neutral equations of state. Most of the discussion 
is of neutral depletion in non-flowing plasmas, with a brief 
discussion of neutral-depleted flowing plasma. Different pro-
cesses that lead to neutral depletion are distinguished. Neutrals 
are depleted either due to the pushing of neutrals by ions that 
move from the center of the discharge towards the walls under 
electron pressure, due to ionization, or due to gas heating by 
the plasma. These processes occur in unmagnetized and in 
magnetized plasmas. The relation between processes that lead 
to neutral depletion and pressure balance is pointed out.

In section 2 measurements in low temperature plasmas that 
indicate neutral depletion are briefly described. The measure-
ments described were taken in rf discharges over the last sev-
eral decades.

In section 3, the general governing equations are presented. 
For simplicity, we restrict ourselves mostly to a steady state 
one-dimensional (1D) slab-geometry plasma bounded by 
walls. Discharges of cylindrical geometry and flowing plas-
mas are also treated in some cases.

Unmagnetized plasma is addressed first. In section 4, a rela-
tion between the electron temperature and the total number of 
neutrals per unit area is derived, a generalization of the known 
relation for uniform-density neutrals. In section  5, plasma 
and neutrals that are collisional and in (static) pressure bal-
ance are discussed. In such collisional plasma, neutral deple-
tion results from both plasma (usually electron) pressure and 
neutral-gas heating by the plasma [24, 26, 62, 72, 74, 77, 78].  
Neutral depletion in a collisional plasma due to electron pres
sure follows the drag force that plasma and neutrals exert on 
each other due to mutual ion–neutral collisions. We call the 
depletion of neutrals due to such collisions neutral pumping 
[62, 77, 78]. Analytical relations are derived, and a nonmono-
tonic dependence of the plasma density on the plasma particle 
flux is shown. Such a nonmonotonic dependence is demon-
strated numerically in cylindrical geometry as well.

In addition to plasma (electron) pressure, neutral-gas heating 
also leads to neutral depletion [24, 26, 74, 78]. Neutral heating 
by the plasma results in a non-uniform gas temperature. Even 
if plasma pressure is negligible so that neutral pressure is uni-
form, the higher gas temperature at the discharge center should 
cause neutral depletion there, a reduced neutral density. Neutral 
depletion due to neutral-gas heating is discussed in section 6. In 
this paper, neutral heating by collisions is balanced by neutral 
heat conduction, while the heat flux is proportional to the neu-
tral temperature gradient [74, 78]. The relations between the 
neutral depletion and the neutral temperature is explored for 
planar and cylindrical geometry. Nonmonotic dependencies of 
the plasma density and of the neutral temperature on the plasma 
flux density (and deposited wave power) are shown.

The process which we coin ion pumping [77] is the removal 
of neutrals by ionization instead of by collisions with ions  
(as in neutral pumping). Ion pumping is dominant when ions 
and neutrals do not collide, so that plasma and neutrals are 
coupled through ionization only. Ion pumping, described in 
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section 7, is the mechanism for neutral depletion when ions 
and neutrals are collisionless [15, 16, 24, 77, 78, 90].

Neutrals of low density that do not collide between them-
selves so that they are not thermalized, but rather move ballis-
tically between the chamber walls, can still be depleted when 
ions collide with them, pushing them towards the wall [78]. 
This happens if the mean free path of an ion between its col
lisions with neutrals is smaller than the mean free path for a 
neutral between its collisions with other neutrals. This differ-
ent type of neutral pumping is described in section 8.

The possibility that, due to ionization, neutral density 
becomes larger at the discharge center than near the wall—
termed ‘repletion’—that has been suggested in [72, 79, 89], 
is examined in section 9. We conclude that it is not likely that 
repletion can occur.

In section 10, we turn to magnetized plasma. The effect of 
the magnetic field on neutral depletion is explored in plasma 
in which the flow is ambipolar and the dynamics is governed 
by cross-field diffusion. The question of ambipolarity in mag-
netized discharge is controversial, as the short-circuit effect is 
often claimed to allow nonambipolar flow across magnetic field 
lines [85, 94, 107, 112, 113]. Indeed, in [85], plasma and neutral 
steady-state with depleted neutrals was analyzed for both ambi-
polar and nonambipolar cross-field diffusions. Here, we study 
the case of ambipolar cross-field diffusion only. Electrons cross 
magnetic field lines due to collisions either with neutrals or with 
ions. We examine separately how these two types of collision 
affect neutral depletion and the magnetized plasma. The ques-
tion that is addressed here is how neutral depletion varies when 
the intensity of the magnetic field varies. We discover that neu-
tral depletion varies differently when either plasma density or 
plasma particle flux density is kept constant when the magnetic 
field varies. We also present the result of a recent study that has 
found that neutral depletion suppresses diamagnetism [114].

Flowing plasmas are also affected by neutral depletion. 
Neutral depletion is important in plasma thrusters [77, 115–133]  
in which both plasma and neutrals are flowing. Neutral deple-
tion in a flowing plasma is described briefly in section 11.

Research has revealed how neutral depletion plays a role 
in configurations not analyzed in this paper. Neutral deple-
tion may lead to time-dependent phenomena, such as breath-
ing oscillations [42, 43]. Sometimes neutral depletion is an 
inherently two-dimensional (2D) phenomenon, especially in 
magnetized plasma [40, 88]. Neutral dynamics and neutral 
depletion are also important in the divertor of the Tokamak 
[84] and in negative-ion sources [91–93, 103–105]. Finally, 
unbounded plasma that is terminated at neutral gas often 
occurs in nature [99]. These more complex phenomena require 
more detailed, and often numerical, analysis for modeling, but 
the analysis presented here could be a useful guide.

2.  Measurement of neutral depletion

Early measurements of neutral depletion in DC discharges are 
described in [8]. Here, we describe the later measurements of 
neutral depletion, mostly in rf discharges.

The first experiments with rf discharge that showed neu-
tral depletion were probably those by Boswell et al [27, 28], 

who used measured Doppler broadening of lines in an argon 
helicon plasma source to deduce ion and neutral temperatures. 
They found that the Ar atoms temperature was about 3000 K 
at the center of the discharge, while near the discharge edges 
it was 300 K. Assuming that the gas was in pressure balance 
(not necessarily coupled to the plasma pressure), they con-
cluded that the gas density at the discharge center was ten 
times lower than near the edge. Boswell mentioned that this 
large decrease of gas density at the center, when occurring in 
pulsed gas lasers, was called gas pumping [28]. Later, Porteous 
and Boswell have simulated an ECR source including neutral 
transport and identified neutral depletion due to both ionization 
and gas heating [29].

In the following studies, various methods were used to 
measure gas temperature in discharges, because of the signifi-
cant effect of gas temperature gradients on density distribu-
tion and transport of reactive free radicals. In certain studies, 
neutral density was measured as well. Here, we mention some 
of these studies.

Gorbatkin et al measured the pressure in the ECR source 
and downstream using magnetically shielded capacitance 
manometers, and found about threefold pressure difference 
[30]. Rossnagel et  al measured the electron density in an 
argon ECR source with a microwave interferometer device 
[31]. They found that when rf power of 1250 W was applied 
to the gas—which was initially at 0.7 mTorr—the gas density 
was reduced to 14% of its value without the discharge. They 
related the neutral depletion to gas heating to 2500 K temper
ature, which they found consistent with temperature meas-
urements based on Doppler broadening. Nakano et  al used 
high-resolution laser-induced fluorescence (LIF) to determine 
the temperature of neutrals in an ECR source [32]. They found 
that the neutral temperature was 800 K in the source and only 
350 K downstream. Hebner [35] measured neutral heating 
in an argon inductively coupled plasma (ICP). Even at mod-
erate power of 200W, the temperature reached 900 K. Hori 
et al [36] measured the radial neutral density profile in argon 
ICP, by Thomson and Rayleigh scattering of laser light. They 
found neutral depletion up to 40%, which was explained by 
gas heating due to collisions of neutrals with charged parti-
cles. Lee and Chang [37] used an optical probe technique in 
an argon ECR to identify neutral depletion. The neutral deple-
tion was also explained by gas heating due to ion-neutral col
lisions. Clarenbach et  al [59] employed time-resolved laser 
absorption spectroscopy, and later also a collisional-radiative 
(CR) code [71] (based on [134, 135]). Assuming a strong 
coupling, such that the temperature of the metastable atoms 
reflects the gas temperature, they deduced the density of the 
ground-state argon atoms, and found that in high density 
argon helicon sources the gas temperature can reach 1000 K, 
and neutral atoms can be depleted by more than a factor of ten. 
Sudit et al [38, 39] estimated the neutral depletion by the dif-
ference between the plasma-off and the plasma-on pressures. 
Gilland et al [40] measured the neutral pressure in the bulk 
of a helicon discharge using temperature-controlled capaci-
tive manometer gauge, and showed the dependence on wave 
power and on the initial fill pressure. They found that the neu-
tral pressure decreased by a factor up to ten compared to the 
pressure before the discharge. Neutral depletion was assumed 
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to be caused by ionization, called neutral pumping in [40] 
(here named ion pumping). Miljak and Chen [41] attributed 
an observed plasma density limit in a high-power helicon dis-
charge to gas depletion.

Neutral-gas heating often occurs in discharges with molec-
ular gases. Booth et al, while using LIF in capacitive coupled 
CF4 plasma, did not find elevated gas temperature, probably 
because the plasma density was not high enough [44]. Abada 
et  al [55] measured the gas temperature in a CF4 inductive 
discharge of a higher plasma density. They did find higher 
gas temperatures at the discharge center (up to 800 K). They 
have shown, both by a global thermal model and by a two 
dimensional model, that heating by electrons (rather than by 
ions) explains the measured gas heating. Heat conduction by 
the neutrals towards the wall was assumed to balance the gas 
heating. The plasma electrons were found to excite a certain 
vibrational mode of CF4. Assuming that there was a suffi-
ciently fast relaxation of this energy into other modes, they 
concluded that this excitation was the dominant electron–neu-
tral collision process [55].

Tynan [46] measured a reduction of neutral pressure at the 
center of ICP and helicon discharges. Tynan and his colleagues 
[46, 48] explained the reduction as neutral depletion that is 
caused by plasma (ion) pumping, neutral evacuation through 
ionization. In later research by the same group, Shimada et al 
[76] used an improved technique of measuring pressure that was 
suitable for rarefied gases too, and measured neutral temper
ature and pressure in Ar/5% N2 ICP. They found that the total 
pressure was uniform, while neutral pressure was lower at 
the discharge center. They were thus able to show that neutral 
depletion resulted from both gas heating and electron pressure. 
Shimada et al [80] then used a hybrid-type DSMC method for 
a 1D cylindrical electrostatic plasma in Ar/N2 mixtures to simu-
late the experiment. In the simulated plasma, the pressure was 
too high for plasma (ion) pumping to be dominant. Plasma pres
sure and gas heating were identified as the major sources for 
neutral depletion. In the simulated gas mixture, a major source 
for argon gas heating was collisions with Franck–Condon disso-
ciated nitrogen atoms [80]. The relative dominance of each type 
of collision, argon ion and neutral atom versus hot (due to dis-
sociation) nitrogen atom and argon atom, was determined in the 
simulations. As expected, when the nitrogen partial pressure was 
larger, the heating due to Franck–Condon dissociated atoms was 
also larger. Near the wall, heating by ion collisions was larger.

At the University of Bochum, O’Connell et  al [81, 82] 
were conducting experiments on an ICP source that could 
operate at lower pressure than other ICP sources. Gas temper
ature was determined from Doppler profiles of diode laser 
absorption measurements on metastable argon. Gas temper
ature was shown to increase significantly with both power 
and pressure; it reached up to 1500 K at 5 Pa  and 2000 W. 
O’Connell et al were able to distinguish in their measurements 
between depletion due to electron pressure and depletion due 
gas heating. Their conclusions were supported by Crintea 
et al [87], who used an optical emission spectroscopy (OES) 
technique together with Thomson scattering for the determi-
nation of electron temperatures and densities in those low-
pressure argon discharges. The dominance of each of the two 
depletion mechanisms was associated with the fill pressure. 

At a lower pressure (lower than 0.1 Pa in their experiment), 
intense ionization resulted in electron pressure comparable to 
the gas pressure, which led to a significant neutral depletion. 
At a higher pressure, gas heating was the dominant depletion 
mechanism. It was demonstrated that because depletion due to 
electron pressure decreases while depletion due to gas heating 
increases when gas pressure is increased, the dependence of 
the depletion on the gas pressure is not monotonic. In their 
measurements, depletion first decreased and later increased 
when gas pressure was increased [81, 82, 87].

Scime’s group has explored various aspects of neutral 
depletion [68, 70, 95, 96, 98, 106]. Keesee et al [68, 70] com-
bined LIF measurements of excited neutral atom states with a 
CR model (based on [134, 135]) to extract the density profile 
of the ground state depleted (up to 60%) neutral atoms. The 
technique was employed further to demonstrate how the ioniz
ation fraction and neutral depletion significantly depend on the 
gas pumping [95]. Magee et al [96] developed a two photon 
absorption laser induced fluorescence (TALIF) diagnostic for 
measuring neutral density. They showed in a krypton helicon 
source that neutral depletion increased while neutral temper
ature decreased when the magnetic field was increased. They 
concluded that neutral depletion in this case does not follow gas 
heating but is, rather, a result of ion pumping. Dominant plasma 
motion was assumed along, and not across, magnetic field lines 
in this study. Magee et al [98] then performed fast time-resolved 
measurements of the neutral density in the helicon source. They 
found a fast decrease of the neutral density in the high elec-
tron temperature plasma near the antenna and about a thousand 
times slower neutral depletion in the lower temperature plasma 
downstream. They conjectured that the neutral depletion near 
the antenna was due to high ionization (ion pumping), while 
downstream it was due to pushing by energetic ions (neutral 
pumping). Galante et al [106] found with the TALIF diagnostic 
method that, contrary to the large neutral depletion in krypton, 
neutral depletion in hydrogen and deuterium was negligible.

Aanesland et  al [75] were probably the first to measure 
neutral depletion using TALIF, following a proposal to use the 
technique by O’Connell et al [69]. With TALIF, Aanesland et al 
[75] measured directly the ground state neutral density in a 
xenon helicon source. Neutral depletion was found to increase 
with magnetic field intensity (as was also found in [96]). The 
sum of plasma pressure and gas pressure (assuming no gas 
heating) was lower on axis than near the wall. It was suggested 
that elevated gas temperature or the inclusion of magnetic pres
sure could recover pressure balance. They also found out that 
the total number of neutrals was lower during the discharge. 
That last finding was explained by Liard et al [97] who used 
time-resolved TALIF to show that the pumping efficiency was 
higher when the magnetized plasma column was ignited.

Denning et al [83] observed neutral depletion in a flowing 
high-power (up to 3 kW) argon helicon plasma. For plasma diag
nostics they used microwave interferometry, a double Langmuir 
probe and optical spectroscopy, together with a CR code. The 
measured plasma parameters, spectroscopic measurements, and 
a CR code (as in [68]) were used to determine the neutral den-
sity. A decrease of neutral density along the flow was found, a 
decrease that was more dramatic for a higher wave power. The 
upstream plasma density increased with power until saturation, 

J. Phys. D: Appl. Phys. 50 (2017) 473002



Topical Review

5

but the downstream plasma density did not increase much with 
power. The asymmetry of the plasma density profile along the 
flow in a helicon plasma source was measured further with a 
Langmuir probe by Takahashi et al [109] for argon, krypton and 
xenon discharges. They suggested that this asymmetry in plasma 
density was related to neutral depletion, as was predicted theor
etically [77], and that the asymmetry affected the axial momen-
tum loss at lateral walls. In a following study, Takahashi et al 
[111] indeed measured the neutral density in an argon helicon 
source. They used a Langmuir probe for the plasma density, 
together with measurement of optical emission—that is pro-
portional to the product of neutrals and plasma densities. Their 
measurements in a 2.5 ms pulsed discharge indicated that the 
neutral density first decreased due to fast ionization in less than 
100 μs, and then the maximum of the plasma density moved 
backwards towards the gas inlet over about 250 μs, establishing 
the axially asymmetric plasma density profile.

Plasma relaxation oscillations have been measured in a 
large volume helicon source, and were associated with neutral 
depletion [42, 43]. Degeling et al [43] found that the plasma 
density oscillates between high and low-density modes. The 
oscillations had a period of several milliseconds, and have been 
identified as transitions between a low-density, inductive dis-
charge and a high-density, helicon-wave discharge. Degeling 
et al [42] showed by a theoretical model that the mode trans
itions could be triggered by variations in the neutral density in 
the source region. The neutral density decreased due to ioniz
ation augmented by ion pumping, and increased due to refilling 
of the source chamber from the much larger diffusion chamber.

Delivering energy and momentum to neutral gas for space 
propulsion is often considered (usually, without examining the 
effect on the neutral density). At the Australian National uni-
versity, a rf electrothermal microthruster has been developed  
[119, 130], named the mini pocket rocket, in which gas pres
sure was increased through neutral heating by the plasma. The 
gas temperature was measured by OES [119]. Makrinich and 
Fruchtman used a balance-force-meter to measure the momen-
tum delivered to neutrals by accelerated ions [116, 120].

Cooper and Gekelman [99] studied a neutral boundary layer 
in which a magnetized plasma terminates on a neutral gas in 
the direction of the magnetic field without touching a solid sur-
face. The experiments were performed at the Enormous Toroidal 
Plasma Device at UCLA. The plasma parameters and the poten-
tial were measured by various probes. The presence of an ambi-
polar electric field and pressure equilibration were reported [99].

3. The governing equations

We assume a steady-state quasi-neutral plasma in which vol-
ume ionization is balanced by recombination at the walls. 
For simplicity and in order to derive analytical results,  
we consider in a large part of the paper a 1D slab geometry in 
which all variables depend on x only. The plasma is assumed to 
be bounded by walls at x = ±a and that there is symmetry with 
respect to the plane x = 0. There might be a uniform magnetic 
field in the z direction of intensity B. When a slab geometry is 
assumed it replaces, in our model, the more realistic cylindrical 
geometry of a magnetized plasma discharge. In several cases, 

cylindrical geometry is addressed, where variables depend on 
the distance r from the axis of symmetry, and the wall is at r = a. 
The plasma flow in the x (or r) direction is assumed ambipolar, 
even when the flow is across a magnetic field. In section 11, an 
analysis of a flowing plasma with an open end is presented.

We describe the plasma and the neutral dynamics by fluid 
equations that allow us a unified simplified description of both 
collisional and collisionless cases. The one-fluid governing 
equations for the plasma in a planar geometry are the continu-
ity equation

dΓ
dx

= S,� (1)

and the momentum equation,

d
(
mnv2 + nT

)
dx

= mSV − mβcNnv − meω
2
c

νe
Γ,� (2)

in which the inertia terms are retained. The source term S will 
usually be assumed to be of the form

S = βNn.� (3)

Here, n and N are the density of the quasi-neutral plasma and 
the density of the neutral gas, v and V are the velocities of the 
plasma and neutral fluids, T is the (assumed uniform) electron 
temperature, m and me are the ion and electron masses, and

Γ ≡ nv� (4)

is the plasma particle flux density in the x direction. The ion 
temperature is assumed to be much smaller than the electron 
temperature, so that the plasma pressure is approximately the 
electron pressure. Otherwise, T should have been the sum of 
the electron temperature and the ion temperature. Also, β and 
βc are the ionization and ion–neutral collision rate coefficients, 
νe is the electron collision frequency, and ωc ≡ eB/me is the 
electron cyclotron frequency (e is the elementary charge). The 
contribution of the magnetic field is expressed by the last term 
on the right-hand side (RHS) of equation (2) when ωc � νe. 
We consider the magnetic field only at this limit.

The momentum equation  for the plasma, equation  (2), is 
the sum of the separate equations of motion for ions and for 
electrons. An ambipolar electric field arises in the plasma that 
exerts equal and opposite forces on the (positive) ions and 
on the electrons in the quasi-neutral plasma. The net electric 
force on the plasma is zero, and therefore the electric force 
does not appear in equation (2).

The governing equations for the neutral gas are the conti-
nuity equation

dΓN

dx
= −S,� (5)

and the momentum equation

d
(
mNV2 + pN

)
dx

= −mSV + mβcNnv.� (6)

Here, ΓN ≡ NV  is the neutral particle flux density in the x 
direction, and pN  is the neutral-gas pressure, for which we 
specify forms later.

The first term on the RHS of equation (2) is the momentum 
of neutrals being ionized—that is added to the momentum of 
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the ion fluid—while the first term on the RHS of equation (6) 
is the same momentum that is subtracted from momentum of 
the neutral fluid (see the derivation using Boltzmann equa-
tion in appendix A of [72]). The second term on the RHS of 
equations (2) and (6) is the drag on ions and neutrals due to 
their mutual collisions. In writing the drag due to ion–neutral 
collisions, we assume that the plasma density is considera-
bly smaller than the neutral density (although their pressures 
might be comparable), so that the plasma velocity is much 
larger than the neutral velocity,

n � N, |v| � |V| .� (7)

Therefore, the drag—the ion–neutral friction force—that 
should be proportional to the relative velocity between ions 
and neutrals, is taken as proportional to the ion (plasma) 
velocity. Because |v| � |V|, we neglect in all the cases treated 
here the first term on the RHS of equation (2). When the net 
mass flow is zero, Γ + ΓN = 0, the following relation

ΓN = −Γ,� (8)

holds. The plasma flows towards the wall, while neutrals flow 
from the wall towards the discharge center. Correspondingly, 
for 0 � x � a, v is positive while V is negative. In section 11, 
we discuss the case of a flowing plasma, in which the net mass 
flow is not zero, so that equation (8) does not hold.

The contributions of ionization and collisions to the total 
momentum of the neutrals, expressed by the two terms on the 
RHS of equation  (6), are positive (for 0 � x � a) and, as a 
result, the total momentum of the neutrals increases monotoni-
cally from the symmetry plane at x = 0 towards the walls at 
x = ±a. This larger total momentum at the wall holds for both 
collisional and collisionless neutrals, and for every form of pN .

Ampere’s law is written as

∂B
∂x

= µ0e
ωc

νe
Γ,� (9)

where µ0 is the vacuum permeability. Summing equations (2) 
and (6) with the use of equation (9), we obtain pressure bal-
ance between plasma pressure, neutrals pressure and magnetic 
pressure,

mnv2 + nT + mNV2 + pN +
B2

2µ0
= pr.� (10)

Here, pr is the uniform total pressure. With the use of equa-
tion  (8) and the assumption that ions reach the ion acoustic 
velocity (or the Bohm velocity [3]),

c ≡
(

T
m

)1/2

,� (11)

at the wall vicinity (at the plasma-sheath boundary), the total 
pressure pr is written as

pr =

(
2 +

nW

NW

)
nWT + pN,W +

B2
W

2µ0
.� (12)

Here, nW , NW, and pN,W  are the plasma density, the neutral 
density, and the neutral pressure near the wall, at the plasma-
sheath boundary (see, for example, [22, 110]).

The equations can be written in an equivalent useful form. 
Combining the continuity and momentum equations  above, 
we write the momentum equation as

mnv
dv
dx

+
d (nT)

dx
= mS(V − v)− mβcNnv − meω

2
c

νe
Γ,� (13)

for the plasma, and as

mNV
dV
dx

+
dpN

dx
= mβcNnv,� (14)

for the neutrals. In the case that

pN = pN(N),� (15)

equation (14) is written as

mNV
dV
dx

+
dpN

dN
dN
dx

= mβcNnv.� (16)

Using equations (5) and (16), we express the spatial derivative 
of the neutral density as(

1
m

dpN

dN
− V2

)
dN
dx

=

(
S
N

− βcN
)
ΓN .� (17)

In addition to the assumptions in equation (7), we assume 
that v is smaller than the neutral thermal velocity, so that the 
friction force is linear in v. Otherwise, the case discussed 
by Godyak of a friction proportional to v2 should be con-
sidered [9]. Therefore, here, βc, the ion–neutral collision 
rate constant, is taken as constant. For argon, it is about 
βc = 6.3 × 10−16 m3 s−1 (chapter 3 in [10]).

We note that in equation  (17) there are four terms, two 
terms on the left-hand side (LHS) and two terms on the 
RHS. When different terms are dominant, the behavior of the 
neutrals is different. While equation (6) showed that the total 
neutral pressure increases towards the wall, the terms in brack-
ets in equation (17) can be either positive or negative, and it 
is not clear a priori whether the neutral density increases or 
decreases towards the wall.

The ionization rate coefficient, β, is approximated as (p 79 
in [10])

β = σ0vte

(
1 +

2T
εi

)
exp

(
−εi

T

)
,

� (18)

where vte ≡ (8T/πme)
1/2 is the electron thermal veloc-

ity and σ0 ≡ π
(
e2/4πε0εi

)2
, ε0 being the vacuum permit

tivity and εi the ionization energy. For example, for argon, 
σ0 = 2.67 × 10−20 m2 and εi = 15.6 eV. We note that β 
depends strongly on T, and often the electron temperature is 
determined once the value of β is specified.

Our interest in this paper is to calculate the rate of neu-
tral-gas depletion in various cases. We define the neutral-gas 
depletion as

D ≡ 1 − N0

NW
,� (19)

where NW is the neutral density at the wall and 
N0 = N(x = 0) is the neutral density at the plane of sym-
metry at the center of the discharge. We note that this defi-
nition is different from the definition we used previously  
[77, 78]. The depletion varies between
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0 � D � 1.� (20)

and its maximal value is unity.

4.  Unmagnetized plasma—electron temperature 
and the number of neutrals

In this section, several general relations for unmagnetized 
plasma, B = 0, are presented. In weakly-ionized plasma, in 
which neutral-gas density is uniform, there is a well-known 
relation between the electron temperature T and the product 
of neutral density and the plasma spatial extent, Na [1–12]. 
Here, this relation is generalized to a discharge of nonuniform 
neutral density due to neutral depletion. The generalization is 
made, though, for an unmagnetized plasma in a planar geom-
etry only. It is shown that in this more general case of non-
uniform neutral density, T is related to the total number of 
neutrals (per unit area) in the discharge, 

∫ a
−a N(x)dx (which is 

reduced to 2Na for a uniform neutral density). In addition, we 
derive relations between the plasma particle flux density and 
the plasma density that in fact also hold when neutral density 
is not uniform. These relations for nonuniform neutral density 
are derived in more detail in [78].

The plasma governing equations  for an unmagnetized 
plasma are the continuity equation, equation  (1), and the 
momentum equation, equation (2), which becomes

d
(
mnv2 + nT

)
dx

= −mβcNnv.� (21)

As explained above, the first term on the RHS of equation (2) 
has been neglected. Equations (1) and (21) are used to derive 
relations between the plasma particle flux density Γ and n, that 
are independent of N. For the derivation, we combine the two 
equations and obtain the relation

d ln Γ
dM2 =

(
1 − M2

)
2M2 [1 + M2 (1 + βc/β)]

,
� (22)
in which

M ≡ v
c� (23)

is the plasma Mach number. Note that the neutral density 
does not appear in Equation  (22); therefore, the relations 
that are subsequently derived also hold for a discharge with 
nonuniform neutral density. Equation  (22) shows that the 
plasma particle flux density does not grow with the veloc-
ity beyond M = 1. As mentioned above, we assume that the 
Mach number is unity at the plasma-sheath boundary near the 
wall. Equation (22) is integrated, and the plasma particle flux 
density, the plasma density, and the Mach number are related 
through

Γ = ncM, n =
n0

[1 + M2 (1 + βc/β)]
1
2 (1+ 1

1+βc/β )
.� (24)

Here, n0 is the maximal plasma density (where the plasma 
flow velocity is zero). The maximal plasma particle flux 
density and the minimal plasma density, both at the plasma 
boundary, are

Γmax = nminc, nmin =
n0

(2 + βc/β)
1
2 (1+ 1

1+βc/β )
.� (25)

Eliminating M from the equations, we write the relation 
between Γ and n as

Γ2
n =

(2 + βc/β)
(2+βc/β)/(1+βc/β)

(1 + βc/β)

[
n2/(2+βc/β)

n − n2
n

]
,� (26)

where

Γn ≡ Γ

Γmax
, nn ≡ n

n0
.� (27)

We now use the relations between Γ and n, together with 
equations (1) and (3), to derive a relation between the electron 
temperature and the total number of neutrals (per unit area). 
From equation (1) we obtain

− M
(1 + βc/β)

+
(2 + βc/β)

(1 + βc/β)
3/2 arctan

[(
1 +

βc

β

)1/2

M

]

=
β

c

∫ x

0
N (x′) dx′,

�

(28)

and, therefore,

− 2
(1 + βc/β)

+ 2
(2 + βc/β)

(1 + βc/β)
3/2 arctan

[(
1 +

βc

β

)1/2
]
=

β

c
NT ,

� (29)
where

NT ≡
∫ a

−a
N (x′) dx′.� (30)

Relation (29) replaces the classical condition derived for the 
weakly-ionized case [1, 6]. Equation (29) relates the total num-
ber of neutrals per unit area NT  to the electron temperature T 
(through β and c). In the weakly-ionized case of uniform gas 
density N, the parameter NT  is reduced to the similarity vari-
able 2Na [6], a similarity variable which is linearly related 
to the Paschen parameter, pNa, in which pN  is the (assumed 
uniform) gas pressure. Thus the total number of particles NT  
can be viewed as a generalized Paschen’s parameter [62].

The bulky expression (29) is reduced to simpler expres-
sions at the collisional and collisionless limits (the following 
equations  (37) and (41)). These simpler expressions will be 
derived shortly.

We write the plasma momentum equation, equation (21), 
so as to exhibit the sonic singularity. Employing equations (1), 
(3) and (22), we write

(
1 − M2) dM

dx
=

βN
c

[
1 + M2

(
1 +

βc

β

)]
.� (31)

We often relate the power deposited in the plasma to the 
rate of generation of electron–ion pairs through ionization. In a 
steady-state, this rate equals the outward plasma particle flux at 
the wall. In our 1D model, we write the relation [10, 11, 136],

P = εT(T)Γmax,� (32)

where P is the deposited power per unit area and εT(T) is the 
energy necessary for generation of an electron–ion pair. This 
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energy includes the sum of the ionization energy, and other 
processes, and is a function of the electron temperature. The 
energy εT  decreases with T for low T, and may increase with 
T for a higher T because of the energy deposited in ions in 
the sheath at the wall. Usually the power deposited in exper
imental system is known, but it is not clear whether P in equa-
tion (32) (multiplied by the area) is all that power, or only a 
part of the generator power. If P and T are known, we can use 
equation  (32) to find Γmax, and from equation  (25) we can 
find n0.

The expressions above are bulky and we will derive simpli-
fied expressions for the special cases of collisional plasma and 
collisionless plasma. Note that the following relations in this 
section also hold for a discharge with a nonuniform neutral 
density.

4.1.  Collisional plasma

For a collisional plasma,

βc

β
� 1,� (33)

we approximate

Γ2
n + n2

n = 1, M =

(
β

βc

)1/2
Γn√

1 − Γ2
n

, Γmax = Γa ≡ n0c
(

β

βc

)1/2

,

� (34)

so that when Γn = 1 at the wall, nmin = 0 and the plasma 
velocity and M are infinite. As is shown below, within this 
diffusion approximation, additional physical quantities, such 
as the neutral heating rate, may become infinite at the wall. 
Whenever finite values for the ion velocity and for the heat-
ing rate are needed, we may take the values at the wall as the 
values that correspond to M = 1, which are

Γn(x = a) =
1

(1 + β/βc)
1/2

∼= 1 − β

2βc
,� (35)

and

nn(x = a) ∼=
(

β

βc

)1/2 (
1 − β

2βc

)
.� (36)

Equation (29) is simplified to [62, 78]

πc

(ββc)
1/2 = NT ,� (37)

and equation (32) is simplified to

P = εT(T)n0c
(

β

βc

)1/2

.� (38)

4.2.  Collisionless plasma

A free-fall model for the collisionless ions accounts for the 
finite temperature of the ion fluid that results from ionization 
at various locations [2, 15, 16, 72, 79]. For simplicity, how-
ever, we use here our cold fluid model presented above. In a 
collisionless plasma,

βc

β
� 1,� (39)

so that we write

Γ2
n = 4nn (1 − nn) , M =

Γn

1 +
√

1 − 4Γ2
n

, Γmax =
n0c
2

.

� (40)
The minimal plasma density is at the wall where 
Γn = 1. The dimensionless minimal plasma density is 
nn = 0.5. Equation (29) is simplified in this case to [77]

(π − 2) c
β

= NT ,� (41)

while equation (32) becomes

P = εT(T)
n0c
2

.� (42)

5.  Collisional plasma—neutral depletion due  
to electron pressure

We now analyze an unmagnetized plasma in which plasma 
and neutrals are collisional, and are coupled by ion–neutral 
collisions. Both planar geometry and cylindrical geometry 
are addressed here. Although neutral depletion in collisional 
plasma had already been calculated in early studies [23, 24], 
the analysis here follows [62, 72], to present certain specific 
results with analytical expressions that are derived for pla-
nar geometry. For the more common cylindrical geometry, 
numerical solutions are presented.

In the collisional plasma and collisional neutral gas, the 
pressure gradient of each is balanced by the drag force due to 
mutual ion–neutral collisions. The inertia terms of both ions 
and neutrals are neglected, as well as the momentum of the 
neutrals due to their drift velocity V (the first terms on the 
RHS of equations (2) and (6)). Neutrals are thermalized, and 
the neutral-gas pressure is taken as

pN = NTg,� (43)

where Tg is the gas temperature. Since neutrals experience 
ion–neutral collisions more than ionization events, neutral 
pumping is the source of neutral depletion.

The momentum equations for collisional plasma and neu-
tral gas are reduced to

d (nT)
dx

= −mβcNΓ,� (44)

for the plasma and

d (NTg)

dx
= mβcNΓ.� (45)

for the neutrals. The drag on the ions (neutrals) due to col
lisions with neutrals (ions) points inward (outward), is bal-
anced by the gradient of the plasma (neutral) pressure that 
exerts an outward (inward) force. Equation (45) is an approx
imation of equation (17) when only the first term on the LHS 
and the second term on the RHS of the equation are retained, 
and the neutral pressure is expressed through equation (43).
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We note that equations (44) and (45) also hold in a cylindri-
cal geometry when x is replaced by r. Therefore, the following 
analysis holds for both planar and cylindrical geometries.

Adding the two equations  (44) and (45), we obtain an 
equation  that expresses a pressure balance between plasma 
and neutrals. The pressure balance is expressed as

pr = NTg + nT ,� (46)

where pr, the total pressure, is uniform. The total pressure 
is then pr = NwTg,w, where Tg,w is the neutral temperature at 
x = ±a. We therefore write

NTg + nT = NwTg,w.� (47)

Equations (46) and (47) are approximations of equations (10) 
and (12) for unmagnetized collisional plasma. In collisional 
plasma, nW � n0, and therefore even if n0T  is comparable 
to NWTg, the plasma pressure near the wall, nWT , can be 
neglected relative to NWTg. Thus, in this collisional case, we 
make the diffusion approximation that n( x = ±a) = 0.

In this case of pressure balance, we may write the expres-
sion for the neutral depletion, as was done in [81, 82], as

1 − D = (1 − De) (1 − DTg) ,� (48)

where De is the neutral depletion due to the electron pressure

De ≡
n0T

NwTg,w
,� (49)

while DTg is the neutral depletion due to the neutral-gas 
heating,

DTg ≡ 1 −
Tg,W

Tg(0)
.� (50)

Here, Tg(0) is the gas temperature at the central plane, x = 0. 
In this section we assume that Tg is uniform, so that

Tg(x) = Tg.� (51)

Therefore, neutral depletion discussed in this section  is due 
to electron pressure. Neutral depletion due to gas heating is 
discussed in the next section.

In the analysis here βc is assumed constant as in [62, 72]. 
Neutral depletion in the case that v is larger than the neutral 
thermal velocity, so that βc is linearly proportional to v [9], is 
not presented here. This case of nonconstant βc has also been 
addressed in [62], and then formulated in detail in [72].

5.1.  Planar geometry

The continuity equations for the plasma and neutral gas, equa-
tions (1), (5) and (3), hold here as well as through all this paper 
for the planar geometry. Combining equations  (1) and (44) 
with the explicit form of the neutral density, equation  (46), 
we obtain a nonlinear diffusion equation for the normalized 
plasma pressure pi ≡ nT/ (NWTg) ,

d
dξ

[
1

(1 − pi)

dpi

dξ

]
+ αL (1 − pi) pi = 0,� (52)

where ξ ≡ x/a, and

αL ≡ βcβN2
Wa2

c2 ,� (53)

a parameter that was defined slightly differently in [62]. In 
the case that pi � 1, equation (52) is reduced to the familiar 
linear diffusion equation [1]. With equations (53) and (37), we 
can also write

α
1/2
L = π

NWa
NT

,� (54)

showing that in the weakly-ionized case (when NT = 2NWa) 

α
1/2
L = π/2. We use the auxilliary variable θ, so that Γn = sin θ 

and nn = cos θ, to transform equation (52) into

α
1/2
L ξ =

∫ θ

0

dθ′

1 − De cos θ′
.� (55)

The solvability condition is

α
1/2
L =

∫ π/2

0

dθ
1 − De cos θ

,� (56)

and it relates the neutral depletion due to electron pressure De 

and the parameter α1/2
L . We derive further analytical expres-

sions. Integrating equation (56) and imposing pi(x = ±a) = 0, 
we obtain the solvability condition as [62]

α
1/2
L cos θ0 = θ0 +

π

2
,� (57)

a condition that relates the parameter α1/2
L  algebraically to

θ0 ≡ arcsin
n0T

NWTg
= arcsinDe.� (58)

The algebraic plasma balance equation, equation (57), can be 
cast in the form of Kepler’s equation [137]. Interestingly, such 
an equation has also been used to describe the dynamics of a 
quantum kicked rotor [138].

We note that in this case of pressure balance with uniform 
gas temperature, the neutral depletion satisfies

D = De =
n0T

NWTg
= sin θ0,� (59)

so that, in fact, equation (57) relates the neutral depletion D 

to the parameter α1/2
L . The relation is written equivalently as

D = − cos
[
α

1/2
L

√
1 − D2

]
.� (60)

The profile of the plasma density is expressed in an implicit 
form as

nn − sin θ0

Γn cos θ0
= cot

[(
θ0 +

π

2

)
ξ
]

,� (61)

where Γn and nn are defined in equations  (27) and (34). 
Equations  (57) and (61) are generalizations of the weakly-
ionized uniform neutral density case to include neutral 
depletion. When neutral depletion is small, when θ0 � π/2, 
these relations yield αL = (π/2)2, θ = (π/2) (1 − ξ) and 
nn = cos [(π/2) ξ], the specified value of αL then determines 
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the electron temperature, recovering the case of uniform neu-
tral density.

The implicit expression, equation  (61), can be modified 
so as to provide an explicit expression for the plasma density 
profile,

nn =
D sin2 [(arcsinD + π

2

)
ξ
]
+

(
1 − D2

)
cos

[(
arcsinD + π

2

)
ξ
]

1 − D2 cos2
[(
arcsinD + π

2

)
ξ
] .

� (62)
Raimbault et al. [72] solved the collisional case in an equiva-
lent way, and derived a different—perhaps more convenient—
explicit expression for the plasma density, which, in the 
notation used here, is

nn =
tan2

(
arcsin D

2 + π
4

)
− tan2

[(
arcsin D

2 + π
4

)
ξ
]

tan2
(
arcsin D

2 + π
4

)
+ tan2

[(
arcsin D

2 + π
4

)
ξ
] .� (63)

The neutral density profile is expressed in terms of the plasma 
density and the neutral depletion as

N
NW

= 1 − Dnn.� (64)

Equation (57) relates the plasma maximal density (through 
θ0) and the electron temperature (through α1/2

L ) to the dis-
charge parameters. If the total number of particles per unit 
area, NT , is specified, the electron temperature T is deter-
mined through equation (37). However, often NT  is not speci-
fied experimentally. In the nonlinear problem of modified 
neutral density, the particle balance equation  is usually not 
sufficient to determine the electron temperature. We may use 
power balance in addition to particle balance to solve simul-
taneously for the electron temperature and density. For deter-
mining power balance, we use equation (38).

The equations above allow us to find the plasma and neu-
tral variables if sufficient control parameters are known. Let 
us assume that the atomic rates β and βc and εT  are known as 
functions of T , and a is specified. If the total pressure pr, the 
(assumed uniform) gas temperature Tg and the power per unit 
area P are specified, we can use equations (60) and (38) to find 
n0 (through D) and T, using NW = pr/Tg. The density profile 
is then calculated. If the total number of neutrals NT , Tg and 
P are given, we use equation (37) to find T, and then equa-
tion (38) to find n0. Equation (60) is then used to calculate D 
and finally, through equation (59), NW is found.

We present here numerical examples taken from [62]. The 
discharge gas is argon at room temperature, the pressure prior 
to the discharge ignition is 10mTorr, and a = 5 cm. Figure 1 
shows the plasma and neutral density profiles, characteris-
tic of neutral depletion. The calculations shown are for low 
power and for high power—each for two cases, one of a fixed 
total number of neutrals (per unit area), NT , and a second of 
a fixed neutral density at the wall, NW. When the power is 
low, the neutral density almost does not vary with ξ, and the 
plasma density has the familiar cos [(π/2) ξ] form. When the 
power is high, the neutral and plasma densities are uniform 
across most of the discharge volume and drop sharply to zero 
(plasma) or peak sharply to a high density (neutrals) near the 
wall, similarly to what was found in measurements ([48], for 
example). Note that in the first case, the fixed total number 

of particles results in an increase of the total pressure with 
power. The increase of the total pressure, NWTg, is expressed 
in figures 1(a) and (b) at the discharge center by a large plasma 
pressure and near the wall by an increased neutral pressure.

The dependencies of the discharge parameters on power 
are shown in figure 2 for fixed NW (and, therefore, a fixed total 
pressure NWTg). Here, a surprising effect of neutral depletion 
was demonstrated. As is shown in figure  2, the increase of 
power for a fixed total pressure is followed by an increase of 
plasma pressure at the expense of the neutral pressure. The 
decrease of NT  (the total number of neutrals per unit area, not 
shown in figure 2) is followed by an increase of the electron 
temperature T (according to equation (37)). Since the energy 
εT  is a decreasing function of T, it follows from equation (25) 
that the increase of the electron temperature T with power 
results in an increase of the plasma flux Γmax with power—an 
increase that is faster than linear. What was unexpected was 
that, despite the fast increase of Γmax with power, i.e. the fast 
increase of plasma production with power, the plasma density 
does not increase faster when the power is increased. Moreover, 
the behavior is nonmonotonic, and above a certain power, the 
plasma density decreases with the power increase. As is shown 
in the figure, this is true for both n(0) and the total number of 
plasma particles, nT ≡

∫ a
−a dxn = (Tg/T) (2Nwa − NT) (fol-

lowing equations  (46) and (37)). Formally, this dependence 

follows the relation n0 = (Γmax/c) (βc/β)
1/2 (equation (34)). 

If Γmax increases while T is constant or increases slowly, n0 
increases as well. However, when the increase of Γmax is 
followed by a fast increase of β due to the increase of T, n0 
decreases with Γmax. The decrease of plasma density with 
power exhibited in figure 2 is a result of deconfinement of the 
plasma caused by neutral depletion. The drag of the neutrals 
on the ions decreases when the neutrals are depleted. Thus, 
even though more ions are produced, they escape the volume 
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Figure 1.  Collisional unmagnetized plasma, planar geometry. 
Plasma and neutral density profiles, fixed total neutrals number—
top (P = 33 kW m−2 and 509 kW m−2), fixed neutral density 
at the boundary—bottom (P = 3 kW m−2 and 121 kW m−2). 
Reprinted figure with permission from [62], Copyright 2005 by the 
American Physical Society.

J. Phys. D: Appl. Phys. 50 (2017) 473002



Topical Review

11

faster, and therefore their density is lower. A nonmonotonic 
dependence of the plasma density on the wave power has been 
indeed measured by Denning et al [83].

5.2.  Cylindrical geometry

When cylindrical geometry is considered, the continuity 
equation becomes

1
r
∂ (rΓ)
∂r

= βNn,� (65)

where we have also used equation (3). Equation (65), together 
with equations (44) and (47) are the governing equations. The 
plasma particle flux density Γ is in the positive radial direc-
tion. For cylindrical geometry, there is no particular advantage 
in using dimensionless quantities. It is also noted that sim-
ple relations between Γ and n such as in equation  (34), that 
were derived for planar geometry, do not exist in cylindrical 
geometry.

Figure 3 presents the dependencies on the plasma particle 
flux density at the wall ΓW  of the discharge parameters of a 
cylindrical plasma. Note that in cylindrical geometry, Γ at the 
wall is denoted as ΓW  and not as Γmax—since, because of the 
geometry, Γ is not maximal at the wall (2πrΓ is maximal at the 
wall). Figure 3 for the dependence on ΓW  in cylindrical geom-
etry is equivalent to figure 2 for the dependence on power in 
a planar geometry. The dependence is nonmonotonic also in 
cylindrical plasma. The plasma maximal density n0 (denoted 
as n in the figure) and the total number of plasma particles for 
unit length nT ≡

∫ a
0 2πrndr  increase with the plasma particle 

flux density ΓW  for low ΓW , but for a high ΓW  both n0 and nT  
decrease with ΓW . The reason for that nonmonotonic depend
ence is the same as in the planar geometry. The plasma resi-
dence time decreases with neutral depletion at higher ΓW  so 
that the plasma density is lower, even though more plasma is 
produced (higher ΓW).

6.  Collisional plasma—neutral depletion  
due to gas heating

In this section, neutral depletion due to gas heating is ana-
lyzed. The change of neutral temperature for collisional neu-
trals was analyzed employing a hydrodynamic formalism by 
Valentini et al, in which the hierarchy of fluid equations was 
closed by relating the heat flux tensor to the pressure tensor 
[25, 26]. Here, we use a simpler model for estimating the gas 
heating and the associated neutral depletion. The heating of 
neutral gas by collisions with electrons and with ions is bal-
anced by heat conduction towards the walls, as was assumed 
in [55, 74, 78]. The analysis here mostly follows [78].

Neutral atoms can gain kinetic energy when they are gener-
ated through recombination at the wall. The recombining ions 
carry a high kinetic energy upon hitting the wall—an energy 
they acquire while they move towards the wall across the 
sheath. A re-emitted neutral atom can carry part of the kinetic 
energy of the impinging ion, according to the accommoda-
tion coefficient, which causes an effective gas heating [20, 21, 
57, 66]. In this paper, we neglect this source of gas heating. 
Volume heating through collisions of neutrals with the higher-
temperature electrons and ions is considered the dominant 
source of gas heating.

The rate of gas heating per unit volume Q(z) is composed 
of several sources [74, 78], based on [10, 139]. As in [78],  
we retain in the analysis two sources,

Q(z) = nNq + nNmβcv2.� (66)

In [78], Q was denoted as pN . The first term on the RHS is due 
to electron–neutral collisions, while the second term is due to 
ion–neutral collisions, the work done by the ion flow colliding 
with neutrals. In atomic-gas discharges we take into account 
electron–neutral elastic collisions,

q = βemT ,� (67)

where βem ≡ 3 (me/m)βe, βe is the electron–neutral momen-
tum transfer rate constant. For example, using the expression 
of βe [10], we obtain that for argon, βem ∼= 5 × 10−18 m3 s−1. 
In equation (67) we approximated T − Tg = T , as T � Tg.

Often, energy released through molecular dissociation by 
electron impact is a major source of gas heating. If there is a 
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m−2 s −1), ni(0) (5 × 1017 m−3), nT

(
2 × 1016 m−2

)
. Γi  and ni(0) 
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Figure 3.  Collisional unmagnetized plasma, cylindrical geometry, 
a = 0.1 m, pr = 1.33 Pa . Maximal plasma density n0 (denoted 
as n), total plasma density per unit length nT , minimal neutrals 
density N0 (denoted as N), and electron temperature versus ΓW . 
Nonmonotonic dependence of n and nT  as in planar geometry.
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minority of molecular gas within a gas that is mostly atomic 
gas, the energy of Franck–Condon dissociated atoms is trans-
ferred to the atomic gas through collisions. The rate of heating 
of the atomic gas in this process is Qdiss = NN2 〈σv〉2 ∆Ediss, 
where N and N2 are the respective densities of the atomic gas 
and of the dissociated hot atoms, 〈σv〉2  is the collision rate 
constant between the majority atoms and the dissociated hot 
atoms, and ∆Ediss is the energy of Franck–Condon dissoci-
ated atoms. We assume that we can write N2 = n 〈σv〉diss Nmτ , 
where 〈σv〉diss is the dissociation rate constant, Nm is the den-
sity of the molecular gas, and τ is the residence time in the 
discharge of the dissociated hot atoms. In that case, the rate 
of heating of the atomic gas due to the molecular dissocia-
tion can be expressed by the first term on the RHS of equa-
tion (66), while the rate constant is written as

q = qdiss = Nm 〈σv〉2 〈σv〉diss ∆Edissτ .� (68)

With these simplifying assumptions (qdiss taken as uniform), 
the case that was simulated by Shimada et al [80] can also be 
analyzed approximately within the present formalism. When 
the chemistry becomes more complicated, a more detailed 
description might be needed [55, 91, 92].

When the mean free path for ion–neutral collisions is 
smaller than the system size, the ion velocity is inversely pro-
portional to N. Therefore, the heating by electrons should be 
dominant at high neutral density, while the heating by ions 
should be dominant at a lower neutral density.

As we noted in section 2, in the diffusion approximation 
of the collisional case (β � βc), in which the ion velocity v 
is infinite at the walls, the heating rate per unit volume is also 
infinite at the walls. As also explained in section 2, whenever 
finite values for the ion velocity and for the heating rate are 
needed in order to resolve a non-physical singularity, we may 
take the values at the wall as the values that correspond to 
M = 1 (equation (34)). The velocity is then the Bohm veloc-
ity, v = c, and the heating is finite.

We assume that the evolution of the neutral-gas temper
ature is governed by the following energy equation

−→∇ ·
[
K (Tg)

−→∇Tg

]
= −Q = −nN

(
q + mβcv2) ,� (69)

as was described in [74, 78] based on [10, 139]. Here K (Tg) is 
the coefficient of heat conductivity.

A numerical solution of equation (69) for a slab geometry 
is presented in figure 4. The profile of the neutral temperature, 
∆Tg/∆Tg,max, is shown for two cases. In one case, the heat-
ing is by electrons only (the first term on the RHS of equa-
tion (69)) and in the second case the heating is by ions only 
(the second term on the RHS of the equation). The calculation 
was done for a weakly-ionized plasma, so that N is assumed 
uniform, n ∼ cos [(π/2) ξ] and v ∼ tan [(π/2) ξ]. It is also 
assumed that q and K are uniform. It is seen in the figure that 
the gas temperature profile is flatter near the discharge center 
when the heating is by ion–neutral collisions—a heating 
which is larger near the wall, where the ion velocity v is larger.

In [78], gas heating by both electrons and ions is analyzed. 
In the following analysis here, we retain the gas heating by 
electrons only, the first term on the RHS of equation  (69). 

Thus 
−→∇ ·

[
K (Tg)

−→∇Tg

]
= −Q = −qnN . Writing the con-

tinuity equation  as 
−→∇ · −→Γ = βNn, we note the similarity 

between plasma particle flux density 
−→
Γ  and heat flux density 

K (Tg)
−→∇Tg. As β and q are assumed uniform, we obtain that 

K (Tg)
−→∇Tg + (q/β)

−→
Γ  is divergence free—and in fact, for 

the simple 1D, either planar or cylindrical geometry,

K (Tg)
−→∇Tg + (q/β)

−→
Γ = 0.� (70)

Combining equation  (70) with equation  (44) 
and equation  (47), we derive the relation 

(ββcm/q)
(
∂
(∫ [

K
(
T ′

g

)
/T ′

g

]
dT ′

g

)
/∂ (Denn)

)
= (1 − Denn)

−1 . 
This relation results in

ββcm
q

∫ Tg

Tg,W

K
(
T ′

g

)

T ′
g

dT ′
g = − ln (1 − Denn) .� (71)

The last two expressions hold for both planar and cylindrical 
geometries. It is now assumed for simplicity that

K (Tg) = K = const.� (72)

With these assumptions, equation (71) is solved for Tg

Tg =
Tg,w

(1 − Denn)
1/Ke

,� (73)

where the normalized heat conductivity is

Ke ≡
Kββcm

q
.� (74)

The neutral depletion due to gas heating (equation (50)) is

DTg = 1 − (1 − De)
1/Ke .� (75)

The maximal gas temperature is

Tg(0) =
Tg,w

(1 − De)
1/Ke

.� (76)

Figure 4.  Collisional unmagnetized plasma, planar geometry. 
Neutrals heating in a weakly-ionized plasma by electron–neutral 
collisions (dashed line) and by ion–neutral collisions (solid line). 
Shown is ∆Tg/∆Tg,max for 0 � ξ � 1 only. The temperature 
profile is flatter near the discharge center when the heating is by 
ion–neutral collisions, a heating which is larger near the wall.
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We use equation  (48) to express D, the neutral depletion 
due to both De, the electric pressure, and DTg, gas heating, 
through De only, as

D = 1 − (1 − De)
1+1/Ke .� (77)

Equivalently, we express the neutral density as

N =
pr

Tg
(1 − Denn) = NW (1 − Denn)

1+1/Ke .� (78)

The neutral density and temperature are related through

Tgn ≡
Tg

Tg,W
=

(
N

NW

)1+Ke

.� (79)

The neutral temperature has been expressed through the 
algebraic expression, equation  (73). These relations hold for 
both planar and cylindrical geometries. The analysis of neutral 
depletion with gas heating is first made for planar geometry 
where analytical expressions are derived. Then, neutral deple-
tion with gas heating is solved numerically for cylindrical 
geometry. The model presented here should be useful in guid-
ing the analysis of measurements of gas heating, as described 
in section  2—an analysis that often requires, in addition, a 
numerical modeling and a more detailed chemistry description.

6.1.  Planar geometry

In a planar geometry, the continuity equation becomes

dΓn

dξ
= α

1/2
L (1 − Denn)

1+1/Ke nn,� (80)

where α1/2
L  is defined in equation  (53) and NW = pr/Tg,w, 

and ξ = x/a, as before. For a planar geometry, Γn and nn are 
related through equation (34). As above, we use the auxiliary 
variable θ, so that Γn = sin θ and nn = cos θ, to express the 
density profile as

α
1/2
L ξ =

∫ θ

0

dθ′

(1 − De cos θ′)
1+1/Ke

,� (81)

and to write a solvability condition:

α
1/2
L =

∫ π/2

0

dθ

(1 − De cos θ)
1+1/Ke

.� (82)

Equations (81) and (82) generalize equations (55) and (56) to 
finite gas heating. As expected, in the case of a small plasma 
pressure, De � 1, equations  (81) and (82) are reduced to 

Schottky’s case [1]: α1/2
L = π/2 .

The parameters in the last two equations are De, α1/2
L , and 

Ke, but usually the unknowns are n0 and T. In addition to par-
ticle balance—equation (82)—we may use power balance—
equation (38)—to find n0 and T, which determine the values 

of De, α1/2
L , and Ke.

When the normalized heat conductivity is small, Ke � 1, 
we can employ Laplace’s method [140] to obtain an asymp-
totic form of the integral in equation (82). At that limit, the 
integral becomes [78]

α
1/2
L =

(
πKe

2De

)1/2 1

(1 − De)
1/2+1/Ke

.� (83)

The numerical examples—figures 5 and 6—are taken 
from [78]. We calculate the pressure and density profiles of 
plasma and neutrals for four different values of the heat con-
ductivity. In all four cases, the total number of neutrals per 
unit area, NT , the deposited power P, and the wall temper
ature Tg,w are specified and are constant. Since the total 
number of neutrals is fixed, the electron temperature T is 
also fixed (according to equation  (37)). The total power is 
fixed and therefore the maximal plasma density n0 is also 
fixed, according to equation  (38). For different values of 
Ke, the total pressure pr and the profile of the neutral-gas 
temperature Tg(x) are different. If, for the same number of 
neutrals and the same deposited power, Ke is smaller, De

(=n0T/NWTg,W) should be smaller and α1/2
L  should be 

larger—both by the same numerical factor, corresponding to 
a larger NW. We present calculations for four cases, where 
Ke = ∞, 1, 1/9, and 1/49, and De = 0.9, 0.7025, 0.286, and 
0.089. We then determine the values of α1/2

L  through the 
integral in equation (82).

Figure 5 presents for each of the four cases the normalized 
plasma pressure nT/pr,1, where pr,1 = NW1Tg,W is the total 
pressure and NW,1 is the neutral density at the wall, when the 
heat conductivity is infinite, Ke = ∞. The normalized neutral 
pressure NT/pr,1 is also presented in figure 5. Figure 6 shows 
the normalized neutral-gas temperature Tg/Tg,w and density 
NTg,w/pr,1 for the four cases. As is expected, it is seen in the 
figures that a lower Ke results in a higher Tg, a higher neutral 
depletion D, and a higher total pressure pr. Even though the 
plasma pressure becomes smaller relative to the total pres
sure, so that De becomes smaller, the larger neutral heating 
results in a larger neutral depletion D. An increase of D with 
a decrease of De for a pressure increase was indeed measured 
by O’Connell et al [81, 82], but not for a constant number of 
neutrals.

6.2.  Cylindrical geometry

In cylindrical geometry, the governing equations  are solved 
here numerically. These are the continuity equation in cylin-
drical geometry, equation  (65), and the plasma momentum 
equation, equation  (44), together with the expression for N 
when the gas is heated, equation (78). Once the equations are 
solved and n(r) is calculated, the neutral temperature Tg(r) is 
found from equation (73).

Figures 7 and 8 show the discharge parameters as a func-
tion of ΓW  for an argon plasma in a cylindrical tube of radius 
a = 0.1 m and pressure near the wall pr = 13.3 Pa  (100 
mTorr). The heating is due to electron–neutral collisions. The 
heat conductivity of argon is taken as constant, with a charac-
teristic value [86] of K = 1.5 × 1021 m−1 s−1.

Two figures,  7 and  8, show the dependencies on ΓW in 
order to enable inspection of the behavior for small values 
of the plasma flux density ΓW. It is seen in figure 7 that for 
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a small ΓW there is a substantial gas heating that results in 
neutral depletion. This is despite the plasma pressure being 
small at this stage. As is seen in figure  8, for a larger ΓW, 

the plasma pressure is comparable to neutral pressure. Then 
plasma (electron) pressure is the source of neutral depletion. 
It is also seen in figure 8 that, in addition to the plasma den-
sity (n0 and nT ), the variation of Tgno(= Tgn(x = 0)) is also 
not monotonic. The neutral temperature, Tgn0, first increases, 
but then decreases with ΓW . This is a result of Ke becoming 
large as T increases. The figures exhibit clearly the different 
regimes in which either De or DTg is dominant.

7.  Collisionless unthermalized neutrals—ion 
pumping

In this section, we assume that the neutrals are collisionless, 
so that they do not collide with ions, and are coupled to the 
plasma only through volume ionization and wall recombi-
nation. Moreover, we assume that the neutrals move ballis-
tically, without colliding between themselves, so that they 
are not thermalized. We also assume that the plasma ions are 
collisionless.

A discharge in which both neutrals and ions are collision-
less, and are coupled through ionization, has been studied in 
various degrees of detail. As described in the Introduction, in a 
1964 paper, Caruso and Cavaliere assumed two monoenergetic 
neutral beams moving in opposite directions in a planar geom-
etry [15]. Since ions are born through ionization at different 
locations, they were described by a free-fall model where their 
pressure is not zero. The model has been extended in 1971 by 
Valentini [16] and by Torven [17] to also address a cylindri-
cal geometry. Also in 1971, Stangeby and Allen calculated, 
in [18], the neutral depletion of ballistic neutrals in a cylin-
drical geometry, while plasma was assumed to be an ionizing 
uniform background. In 1976, Valentini used the Boltzmann 
equation to derive equations for the moments of the velocity 
distributions of both neutrals and ions in planar and cylindrical 
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coefficients of normalized heat conductivity, Ke. The resulting 
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Figure 6.  Collisional unmagnetized plasma, planar geometry. 
Normalized neutral-gas density and temperature for four different 
coefficients of normalized heat conductivity, Ke, as in figure 3. The 
resulting maximal normalized neutral density NW/NW,1 equals the 
normalized total pressure NWTg,W/NW,1Tg,W :(a) 1, (b) 1.281,  
(c) 3.147, (d) 10.112. The maximal normalized neutral temperature 
Tg(ξ = 0)/Tg,w is (a) 1, (b) 3.3613, (c) 20.73, (d) 96.29. The neutral 
depletion D is: (a) 0.9, (b) 0.9115, (c) 0.965 52, (d) 0.990 54. Note 
that in (c) and in (d) 0.1Tg/Tg,w is presented. Reproduced from [78]. 
© IOP Publishing Ltd. All rights reserved.

Figure 7.  Neutral gas heating in collisional unmagnetized plasma, 
cylindrical geometry, a = 0.1 m, pr = 13.3 Pa . The neutrals 
temperature Tgn0 (at r = 0) is normalized to 300 K. The neutrals 
pressure at the discharge center PN0 (at r = 0) hardly changes while 
N0 (also at r = 0) decreases and Tgn0 increases.

Figure 8.  Neutral gas heating in collisional unmagnetized plasma, 
cylindrical geometry. The same calculation as in figure 7 on a larger 
range of ΓW . It is seen that n0, nT  and also Tgn0 are not monotonic 
with ΓW .
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geometries [22]. He then closed the hierarchy of fluid equa-
tions  by relating the heat flux tensor to the pressure tensor 
[25, 26]. Valentini showed that both pressure and temperature 
become anisotropic under these conditions. The initial velocity 
of the ions born through ionization was also taken into account. 
Due to this initial velocity, an ion born through ionization 
could initially move toward the center of the discharge against 
the electric force, then being reflected back towards the wall 
[23, 24]. The effect of this initial ion velocity becomes small if 
the neutral temperature is smaller relative to the kinetic energy 
that ions can acquire through their fall across the potential 
drop. Neutrals have also been assumed to move ballistically in 
certain later studies [48, 60, 73, 77, 79].

We treat the neutrals here similarly to what was originally 
done in [15]. The neutrals move ballistically between the walls 
in a planar geometry. We will initially allow a general velocity 
distribution function for the neutrals, and then write the solu-
tion for two counter-streaming monoenergetic beams. The 
plasma could be treated with a free-fall picture, as was also 
used in later publications (for example, in [79]). However, for 
simplicity the plasma ions are treated as a cold fluid, as was 
described in section  4. This is definitely an approximation 
only, since being born in different locations, not all ions have 
the same velocity at a particular location. This simplified pic-
ture demonstrates, though, some of the features of neutral 
depletion in a collisionless plasma—as well as features of the 
pressure moment of the neutrals.

Collisionless neutrals that move ballistically are depleted at 
the discharge center as a result of ionization within the plasma—
a process we term ‘ion pumping’. Neutral depletion with bal-
listic neutrals has been examined theoretically often over the 
years. The analysis of neutral depletion with ballistic neutrals 
presented here follows [15, 16, 22, 77, 79]. It is shown here 
that the discharge center is the location of the lowest neutral 
density but the highest neutral pressure. The total pressure of 
the neutrals (which includes the inertia contribution) is shown 
to be lowest at the discharge center. Analytical expressions for 
the neutral variables are presented for a simple case.

The fluid equations for the neutrals are reduced in the case 
of collisionless neutrals to

dΓN

dx
= −βNn,

d
(
mNV2 + pN

)
dx

= −mβNnV .
�

(84)

The neutral pressure pN  for ballistic neutrals will be derived 
here through a kinetic analysis.

The neutral-gas distribution function, fN (v, x), is obtained 
by solving the steady-state Boltzmann equation,

d (vfN)
dx

= −βnfN ,� (85)

and is found to be

fN (v, x) = fN (v,−a) exp
[
−β

v

∫ x

−a
n (x′) dx′

]
.� (86)

We showed in [77] that neutrals of a distribution function 
described by equation (86) are depleted for every fN (v,−a) 
(this had already been shown in previous studies [15–17]). 
Thus, collisionless neutrals that move ballistically between the 

walls will always have a lower density away from the walls, 
independent of their distribution function at the wall. In con-
trast, as we have already noted, if a neutral gas is both col
lisionless and thermalized, it should experience repletion [72, 
79, 89]—the density maximum of the neutrals being at the cen-
ter of the discharge chamber, away from the walls. Repletion is 
discussed in section 9, where the possible existence of neutrals 
that are both collisionless and thermalized is challenged.

We apply the formalism to the simple case that the neu-
tral gas is composed of two monoenergetic counter-streaming 
beams [15, 16, 22, 77, 79]. The neutral-gas distribution func-
tion is then

fN (v, x) =
Γ1(x)

va
δ (v − va) +

Γ2(x)
va

δ (v + va) .� (87)

The neutral density, particle flux-density and velocity are

N(x) =
Γ1(x) + Γ2(z)

va
, ΓN(x) = Γ1(x)− Γ2(x), V(x) = va

Γ1(x)− Γ2(x)
Γ1(x) + Γ2(x)

,

� (88)
while the neutral pressure is

pN(x) =
∫ ∞

−∞
dvfN (v, x)m (v − V)

2
=

4mΓ1(x)Γ2(x)
N(x)

.� (89)

From the continuity equations for the two separate beams

dΓ1

dx
= −βn

Γ1

va
,

dΓ2

dx
= βn

Γ2

va
,� (90)

it follows that

Γ1(x)Γ2(x) =
N2

0 v2
a

4
,� (91)

where, as noted above, N0 is the lowest value of the neutral 
density, attained at x = 0. The pressure is therefore

pN(x) =
mN2

0 v2
a

N(x)
.� (92)

The neutral pressure turns out to be inversely proportional to 
the neutral density.

A straightforward analysis provides further relations. Such 
is the relation between the neutral particle flux density and the 
neutral density,

N =

√
Γ2

N(z) + N2
0 v2

a

va
.� (93)

Following equation (90), we can express the neutral-gas vari-
ables in terms of the plasma density distribution,

ΓN =
NWva

cosh
(

β
va

nT
2

) sinh

(
− β

va

∫ x

0
n (x′) dx′

)
,� (94)

N =
NW

cosh
(

β
va

nT
2

) cosh

(
− β

va

∫ x

0
n (x′) dx′

)
,� (95)

and

V = va tanh

(
− β

va

∫ x

0
n (x′) dx′

)
.� (96)
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Here,

nT ≡
∫ a

−a
n(x)dx� (97)

is the total number of plasma particles per unit area.
The neutral variables ΓN , N, and V satisfy equation  (17) 

when the second term on the RHS, that express neutral  
collisions with ions, is neglected. The equation then reads

(
−N2

0

N2 v2
a − V2

)
dN
dx

= βnΓN .� (98)

We have substituted into the equation the expression for the 
neutral pressure, equation  (92), and the expression for the 
ionization rate, equation (3). Since ΓN < 0, the derivative of 
the neutral density is negative, dN/dx < 0, so that there is 
neutral depletion. We also note that the total neutral pressure 
is not uniform. It is easily verified that the total neutral pres
sure, pNT ≡ mNV2 + pN, satisfies

pNT = mNV2 + pN = mNv2
a.� (99)

The total neutral pressure pNT  is linearly proportional to the 
neutral density, and is lowest at the center of the discharge. 
The ionization modifies the momentum of the neutrals. As 
mentioned above, each term on the RHS of equation  (6) is 
positive; here, only the first term on the RHS of equation (6) 
is nonzero, and this term causes the total neutral pressure to 
increase from the discharge center towards the wall. This is 
in contrast to the decrease of pN  from the discharge center 
towards the wall.

From the expression for the neutras density we find that

N0 =
NW

cosh
(

β
va

nT
2

) ,� (100)

so that the neutral depletion is

D ≡ 1 − N0

NW
= 1 − 1

cosh
(

β
va

nT
2

) .� (101)

Similar expressions have been presented in [16, 21].
Following equation  (94), we express the neutral particle 

flux density at the wall as

ΓN(x = a) = NWva tanh

(
− β

va

nT

2

)
.� (102)

The ratio of the total neutral pressure at the center of the dis-
charge and at the wall is

pNT (x = 0)
pNT (x = a)

=
N0

NW
= 1 − D.� (103)

We turn now to the plasma dynamics. The plasma ions 
are assumed collisionless, so that the plasma dynamics is as 
described in section 4.2. As mentioned above, for simplicity, 
we use a cold fluid model for the ions, instead of the more 
accurate free-fall model [2, 15, 16, 72, 79]. The plasma flux 
at the wall, Γmax = n0c/2 (equation (40)), equals in size to 
ΓN(x = a), so that

n0c
2

= NWva tanh

(
− β

va

nT

2

)
,� (104)

which is a relation between the plasma and neutral param
eters. We therefore write the equivalent relations

N0

NW
=

√
1 −

(
n0c

2NWva

)2

=⇒ D = 1 −

√
1 −

(
n0c

2NWva

)2

.

� (105)

Equation (41), that relates the electron temperature T to the 
total number of neutrals per unit area NT , enables us to write 
an expression for the neutral depletion that does not depend 
explicitly on the electron temperature. Using equations (101) 
and (41), we write

D = 1 − 1

cosh
(

π−2
2

c
va

nT
NT

) .� (106)

If NT  and nT  are known (as well as va), then T is determined, 
and the neutral depletion is given by equation (101) (or equa-
tion (106)). Otherwise, one more relation is available between 
the plasma and neutral variables. This relation is derived now. 
We write the continuity equation as

dΓn

dξ
=

βn0a
va

√
Γ2

n +

[
2N0va

n0c

]2 (
1 +

√
1 − Γ2

n

)
,� (107)

where Γn = 2Γ/n0c (see equation  (40)). The solvability 
condition,
∫ 1

0

dΓn√
Γ2

n + 1/ (2D − D2)
(

1 +
√

1 − Γ2
n

) =
βn0a

va
,� (108)

relates the neutral depletion D to the parameter βn0a/va; here 

we have used the relation [2N0va/n0c]2 = 1/
(
2D − D2

)
.

Figures 9 and 10, taken from [77], show the normalized 
plasma density and normalized neutral density when neutral 
depletion is small and large respectively. In the case of large 
neutral depletion (n0c/2NWva)

2
= 0.99, so that D = 0.9. In 

both cases the density of the collisionless plasma at the wall 
is half the maximal density. When neutral depletion is signifi-
cant (figure 10), the profile of the plasma density is flat near 
the discharge center, and the plasma density is approximately 
uniform in most of the discharge, dropping to n0/2 only in the 
wall vicinity. Note also that when neutral depletion is signifi-
cant, the neutrals pressure is maximal at the discharge center 
PN,n = pN/pN(0), even though their density is minimal there, 
following equation (92). The total pressure, which is minimal 
at the discharge center (equation (99)), is not shown in the 
figures.

8.  Collisional unthermalized neutrals—neutral 
pumping

In this section, collisional plasma is again treated, but col
lisional neutral dynamics is assumed, which is different than 
the collisional neutral dynamics assumed in sections 5 and 6. 
We assume that the neutrals are collisional, so that they do 
collide with ions, contrary to the collisionless neutrals ana-
lyzed in the previous section. However, as in the previous sec-
tion, and differently from in sections 5 and 6, the neutrals are 
assumed here to move ballistically before they collide with 
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an ion, without colliding between themselves, so that they 
are not thermalized. Such a situation can arise when the cross 
section for ion–neutral collision is larger than the cross sec-
tion for neutral–neutral collision. The mean free path for ions 
between collisions with neutrals is then smaller than the mean 
free path for a neutral atom between its collisions with other 
neutrals. For example, according to the tables  for argon on 
pages 568 and 570 in [141], for a large range of energies, the 
cross section for ion–neutral collision is more than ten times 
larger than the cross section for neutral–neutral collision. This 
means that if the length of the chamber is ten times larger 
than the mean free path for ion–neutral collision, an ion may 
collide ten times with neutrals, while a neutral experiencing 
a collision with an ion moves ballistically after such a col
lision, without colliding with another neutral before hitting 
the wall. The regime of validity for this picture is not large, but 
the picture allows a simple analysis, equivalent to the case of 
ion pumping in the previous section. When the neutral density 
is large, so that neutral–neutral collisions are more frequent, 
the simple analysis here ceases to be valid, and a model of 
thermalized neutrals, such as in the sections above, has to be 
used. An example of this intermediate density regime of neu-
trals, in which they experience collisions with ions but not 
between themselves, is also given for a flowing plasma later 
in the paper.

A neutral atom that encounters a collision with an ion 
acquires in the collision a high velocity towards the wall. This 
colliding neutral atom reaches the wall without any additional 
collision, either with an ion or with another neutral atom. The 
collisional neutral dynamics assumed here is therefore equiva-
lent to the collisionless neutral dynamics assumed in the pre-
vious section; the collision event here replaces the ionization 
event of the collisionless case, both events removing neutrals 
from their slow ballistic motion, and causing them to move, 
fast, to the wall. Since neutrals are expelled through collisions, 
and not through ionization, the process belongs to what we 
call neutral pumping, which was analyzed in sections 5 and 6 
(contrary to ion pumping).

The neutral dynamics assumed here is an approximation for 
a plasma in which β � βc, and for a gas that is dilute enough 

so that neutral–neutral collisions are rare. The assumed neu-
tral dynamics allows us a simple description of the plasma, 
and of neutral dynamics with neutral depletion. The analysis 
in this section follows the analysis in [78, 90].

The neutrals move ballistically either to the right (positive x)  
with a particle flux density Γ1(x) and density N1(x), or to the 
left with a particle flux density Γ2(x) and density N2(x). For 
simplicity, the neutral gas is taken as composed initially of 
two monoenergetic counter-streaming beams, as in the case 
of collisionless neutrals in the previous section. Therefore, all 
neutrals are assumed to have a velocity of the same magnitude 
va = Γ1(x)/N1(x) = Γ2(x)/N2(x). Some of the neutrals gain 
a large velocity towards the wall through collisions with fast 
ions. This neutral pumping is the fast removal of the colliding 
neutrals from the discharge towards the wall. The fast comp
onent of the neutral flow is of a flux density Γ3(x) and density 
N3(x), and is in the direction of the plasma flow. Once a fast 
neutral hits the wall, it is assumed to be reflected with the low 
velocity va. Particle conservation is expressed as

Γ + Γ1 − Γ2 + Γ3 = Γm,� (109)

where Γm is the total particle flux density and

N = N1 + N2 + N3.� (110)

The continuity equations for the various species are

dΓ
dx

= β (N1 + N2 + N3) n,
dΓ1

dx
= −βN1n − βcN1n,

dΓ2

dx
= βN2n + βcN2n,

�
(111)

and

dΓ3

dx
= βc (N1 + N2) n − βN3n.� (112)

Ion–neutral collisions may generate a wide distribution 
of neutral velocities, so that the distinction between a slow 
component and a fast component of the neutrals is not that 
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Figure 9.  Neutrals are collisionless and unthermalized, planar 
geometry. Normalized plasma nn and neutral Nn densities in the small 
depletion case. © 2008 IEEE. Reprinted, with permission, from [77].
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Figure 10.  Neutrals are collisionless and unthermalized, planar 
geometry. Normalized plasma nn and neutral Nn densities in the 
high depletion case, D = 0.9. The plasma density at the wall is 
half the maximal value. The neutrals pressure is highest where the 
neutral density is lowest, at the center. © 2008 IEEE. Reprinted, 
with permission, from [77].
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clear. Such collisions then lead to heating and thermaliza-
tion of the neutral gas, as modeled in section 5. If the domi-
nant collisions are charge exchange collisions, the colliding 
neutrals are expected to gain a high velocity directed along 
the ambipolar electric field towards the wall. This is the 
case that we model in this section, treating separately a slow 
component and a fast component of the neutrals. In recent 
years, configurations for plasma thrusters have been pro-
posed, in which the thrust is provided by accelerated neu-
trals. Some configurations rely on neutral-gas heating [100, 
102], while others rely on accelerating neutrals through 
charge exchange collisions without necessarily heating the 
gas [90, 116, 126].

We continue the analysis by treating separately the slow 
component and the fast component of the gas. We assume that 
the velocity of the fast neutrals is so high and their flux is not 
too large, so that the density of the fast neutrals is much lower 
than the density of the slow neutrals,

N3 � N1, N2.� (113)

Because of their low density, the ionization of the fast neu-
trals is small. As said above, we also assume that neutrals do 
not collide and thermalize, so that the three neutral popula-
tions remain distinct. We therefore approximate the continuity 
equations as

dΓ
dx

= β (N1 + N2) n,
dΓ1

dx
= −βcN1n,

dΓ2

dx
= βcN2n,

dΓ3

dx
= βc (N1 + N2) n.

�

(114)

From these approximated equations, we derive the relation

Γ3 =
βc

β
Γ � Γ.� (115)

The relation (115) results in the flux of fast neutrals being 
larger than the plasma flux, leading (not necessarily but usu-
ally) to the force exerted by the neutrals, rather than the ion 
momentum, balancing the plasma pressure. The mass conser-
vation is therefore approximated as

Γ1 − Γ2 +
βc

β
Γ ∼= Γm.� (116)

The slow neutrals are converted into fast neutrals and (at a 
smaller rate) into ions. We address in this section only cases 
of zero net flux, Γm = 0. The equations now are identical to 
those in the previous case of ion pumping, with the difference 
that the flux of the slow neutrals ΓN ≡ Γ1 − Γ2  is balanced 
mostly by the flux of the fast neutrals, Γ3 = (βc/β) Γ, instead 
of by the flux of the ions, Γ. Equivalently to the previous sec-
tion on ion pumping, we write for the variables of the slow 
neutrals,

ΓN =
NWva

cosh
(

βc
va

nT
2

) sinh

(
−βc

va

∫ x

0
n (x′) dx′

)
,� (117)

N =
NW

cosh
(

βc
va

nT
2

) cosh

(
−βc

va

∫ x

0
n (x′) dx′

)
,� (118)

and

V = va tanh

(
−βc

va

∫ x

0
n (x′) dx′

)
.� (119)

The expressions for the slow neutral variables are identical to 
the expressions for the neutrals derived in the previous sec-
tion for ion pumping, βc replacing here β of the ion pumping 
case. From the expression for the neutral density, it follows that

N0 =
NW

cosh
(

βc
va

nT
2

) ,� (120)

so that the neutral depletion is

D ≡ 1 − N0

NW
= 1 − 1

cosh
(

βc
va

nT
2

) ,� (121)

equivalently to the case of ion pumping.
We now relate the neutral flux at the wall to the plasma 

flux there,

Γ (x = a) = n0c
(

β

βc

)1/2

=
β

βc
ΓN =

β

βc
NWva tanh

(
−βc

va

nT

2

)
.

�
(122)

Following equation (90), we express the neutral depletion in 
terms of the plasma maximal density n0 and total number per 
unit area nT ,

N0

NW
=

√
1 − βc

β

(
n0c

NWva

)2

=⇒ D = 1 − 1

cosh
(

βc
va

nT
2

)

= 1 −

√
1 − βc

β

(
n0c

NWva

)2

.

�

(123)

With the relation between the electron temperature and the 
total number of neutrals per unit area, equation (37), we write 
the last expression as

N0

NW
=

√
1 −

(
βcn0NT

πNWva

)2

=⇒ D = 1 −

√
1 −

(
βcn0NT

πNWva

)2

.

�
(124)

The equation for Γ in equations (114) becomes

dΓn

dξ
=

βcn0a
va

√
Γ2

n (ξ) +
N2

0 v2
aβ

n2
0c2βc

√
1 − Γ2

n.� (125)

The solvability condition is
∫ 1

0

dΓn
√

1 − Γ2
n

√
Γ2

n (ξ) + (1 − D)
2
/ (2D − D2)

=
βcn0a

va
,

� (126)
which is written with the usual auxiliary variable θ = arcsin Γn 
as
∫ π/2

0

dθ√
sin2 θ + (1 − D)

2
/ (2D − D2)

=
βcn0a

va
.� (127)

The solvability condition relates βcn0a/va to the neutral 
depletion D, or, equivalently to NT/πNWa.
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Figure 11, taken from [78], shows the normalized 
density profiles of the plasma and of the neutrals, for 
a high depletion case. Neutrals are collisional, and 
(βc/β) (n0c/NWva)

2
= 0.9999, resulting in D = 0.99. Such a 

configuration with ion–neutral collisions, as described in sec-
tion 8, has been considered for a plasma thruster [90, 116].

9.  Collisionless thermalized neutrals—neutral 
repletion

In all cases discussed so far, the interaction between the plasma 
and neutrals resulted in neutral depletion, the neutral-gas den-
sity being lower at the center of the discharge than near the 
discharge wall. Here, we examine the possibility suggested in 
[72, 79, 89]—termed ‘repletion’—of the neutral-gas density 
being higher at the center of the discharge than near the wall. 
It is shown that it is not clear whether the conditions for the 
realization of repletion—frequent neutral–neutral collisions 
and rare neutral–ion collisions—can actually be satisfied.

In discussing equation  (6), we have shown that the total 
neutral pressure, pNT , increases monotonically towards the 
wall. In the purely collisionless case of ion pumping, it was 
shown in section 6 that despite that increase of the total neu-
tral pressure towards the wall, pN  is maximal at the discharge 
center, and decreases towards the wall. The neutral density N, 
however, increases towards the wall. If neutrals still hardly 
collide with ions, but neutral–neutral collisions thermalize 
the neutrals so that their pressure is pN = NTg and Tg is uni-
form, then, if the maximal pN  is at the discharge center, so 
is the maximal N. Neutral repletion is expected, in which pN  
decreases towards the wall, while the total pressure increases 
towards the wall. We therefore examine equation (17)

(
c2

N − V2) dN
dx

=
S
N
ΓN − βcNΓN ,� (128)

where cN ≡
√

Tg/m is the uniform gas sound speed. Note that 
the first term on the RHS, which is the contribution of ioniz
ation to the neutral momentum, does not increase with the 
neutral density. This is because, for a specified ΓN , an increase 
of neutral density N results in a lower velocity V, and thus a 
lower momentum transfer.

Let us now examine the case that S/N > βcN , so that the 
neutral density decreases towards the wall (note that ΓN < 0 
for 0 � x � a). The case that the collisions term can be 
neglected, S/N � βcN , can be solved analytically. In this 
case, equation (5) and equation (6) (in which the second term 
on the RHS is neglected) are combined to give

V2 =
Γ2

N

N2 = c2
N ln

(
N2

0

N2

)
, pNT = NTg

[
1 + ln

(
N0

N

)2
]

,

� (129)
where N0 = N(x = 0). Since V � cN , the last relation yields 
bounds on the maximum variation of neutral density and pres
sure. These are

NW � N0 � 1.649NW , pNT (x = a) � pNT (x = 0) � 0.8245pNT (x = a) ,
�

(130)

where exp(1/2) = 1.649.
It is seen in equation  (130) that if the peak density is at 

the center, the variation of neutral density is not large. In 
the following analysis we can regard the neutral density as 
approximately constant, N ∼= NW . The source term can be 
estimated as S ≈ Γ/a and since Γ = −ΓN � NWcN , we find 
that S/N � cN/a. The requirement for the occurrence of reple-
tion, S/N > βcN , becomes βcNa/cN � 1. We can express 
the ion–neutral collision rate constant as βc ∼= σiN (v − V) 
if |v − V| > cN  or as βc ∼= σiNcN  if |v − V| < cN , where σiN 
is the ion–neutral collision cross section. In both cases, we 
can write the requirement for the occurrence of repletion as 
σiNNa � 1. The cross-section for neutral–neutral collisions 
σNN  is expected to satisfy σNN � σiN, so that the requirement 
for repletion to occur results in

a
λNN

< 1,� (131)

where λNN ≡ 1/σNNN  is the neutral–neutral collision mean 
free path. This means that neutral-neutral collisions should be 
rare. However, in the case that neutral–neutral collisions are 
rare, it is hard to assume that Tg is uniform, as we assumed in 
order for repletion to occur. Note that the analysis above did 
not rely on the plasma dynamics.

In summary, the analysis presented here suggests that there 
is no regime in which the drag by ions is small, and—simulta-
neously—neutral–neutral collisions are frequent. It could be, 
therefore, that neutral repletion does not occur, and only neu-
tral depletion can occur.

10.  Magnetized plasmas

We analyze here neutral depletion in a magnetized plasma. 
Magnetic field parallel to the wall and an ambipolar motion 
of the plasma across the magnetic field towards the wall are 
assumed. The neutrals move from the wall towards the dis-
charge center. The motion either of the plasma or of the neu-
trals along the magnetic field is neglected, assuming that the 
system dimension along the magnetic field is much larger than 
across the magnetic field.
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Figure 11.  Neutrals are collisional and unthermalized, planar 
geometry. Normalized plasma and neutral densities in the high 
depletion case, D = 0.99. The plasma density at the wall is zero. 
Reproduced from [78]. © IOP Publishing Ltd. All rights reserved.
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In analysing cross-field transport of a plasma, sometimes 
it is assumed that the flow is not ambipolar. Ions only cross 
magnetic field lines in the plasma, while electrons leave the 
plasma along the field lines and unite with ions at the plasma 
boundaries. The net charge crossing the plasma boundaries 
is zero, so that the flow is ambipolar globally, but is nonam-
bipolar locally. This mechanism for nonambipolar flow is 
called the short circuit effect [112, 85, 94, 107]. In [85], we 
examined neutral depletion in magnetized plasmas for vari-
ous cross-field transport mechanisms, in both ambipolar and 
nonambipolar plasma flows. In the analysis here, however, 
we restrict ourselves to ambipolar flow (the plasma flow is 
ambipolar also locally), as analyzed in [85] and also in [86].

Our interest here is the influence of the magnetic field on 
neutral depletion. The question we would like to answer is 
whether neutral depletion increases or decreases when the 
magnetic field is increased. It was pointed out in [86] that 
increasing the magnetic field while the plasma density is kept 
fixed seems to weaken neutral depletion. It was also pointed out 
that the simultaneous effect of that increase of magnetic field 
on other discharge parameters should be considered. We find 
that indeed it has to be specified how other control parameters 
vary when the magnetic field is varied. We examine the effect of 
varying the magnetic field when either the plasma density or the 
plasma particle flux density is kept constant. It is shown that if 
it is the plasma density that is kept constant while the magnetic 
field is varied, then neutral depletion indeed decreases with the 
magnetic field. However, if plasma particle flux is kept constant 
while the magnetic field is varied, then neutral depletion does 
not vary when the magnetic field is varied.

In the following discussion, we show through examining 
dimensionless parameters how the magnetic field affects neu-
tral depletion while either plasma density, electron temper
ature, or plasma particle flux is kept constant; the reader may 
prefer to skip the detailed analysis and to read subsection 
10.3, where numerical results are given.

The momentum equation  for the plasma, equation  (2), is 
first approximated as

d (nT)
dx

= −mβcNΓ− meω
2
c

νe
Γ.

�
(132)

The relative dominance of the two terms on the RHS of equa-
tion (132) reflects the relative dominance of neutrals pressure 
and magnetic pressure in balancing the plasma pressure. The 
associated competition between neutral depletion and dia-
magnetism has been studied recently experimentally [114] 
and theoretically [142]. The results of [114] are described 
briefly in subsection 10.3. We examine here the case that the 
magnetic field is strong enough, so that we neglect the drag on 
the ions due to collisions with neutrals. The momentum equa-
tion for the plasma is then

d (nT)
dx

= −meω
2
c

νe
Γ.

�
(133)

In an ambipolar flow, the diffusion across magnetic field lines 
is determined by the electrons, because of their smaller cross-
field mobility. Electrons cross field lines either due to col
lisions with neutrals or due to collisions with ions. We assume 

no anomalous cross-field transport. The collision frequency is 
therefore written as

νe = βeNN + βein.� (134)

Here βeN and βei are the electron–neutral and electron–ion 
collision rate constants, respectively (denoted in [85] as keN  
and kei). We turn to the neutral dynamics. The magnetic field 
does not affect the neutrals directly. As in sections 5 and 6, the 
pressure gradient of the neutrals is assumed to be balanced by 
the drag force exerted by the ions. We write equation (45) as

d (NTg)

dx
= mβcNΓ.� (135)

Using equations (1) and (3), we write the continuity equation as

dΓ
dx

= βNn.� (136)

Equations (133)–(136) are the governing equations. The 
neutral depletion is found by solving these governing equa-
tions and finding N0.

It is convenient to write the governing equations  in a 
dimensionless form. These are

dnn

dξ
= − ΓB

(beNNn + beinn)
,� (137)

dNn

dξ
= NnΓB,� (138)

and

dΓB

dξ
= bionNnnn,� (139)

where the dimensionless parameters are

beN ≡ TmβcβeNNWn0

Tgmeω2
c

, bei ≡
Tmβcβein2

0

2Tgmeω2
c

, bion ≡ mβcβNWn0a2

Tg
.

� (140)
In [85], beN  was denoted as D⊥eN  and bei was denoted as 
D⊥ei/2. The normalized variables are

nn ≡ n
n0

, Nn ≡ N
NW

, ΓB ≡ mβca
Tg

Γ.� (141)

Note that the dimensionless ΓB in the magnetized plasma is 
different from the dimensionless Γn that we defined in sec-
tion 4 for the unmagnetized plasma.

The boundary conditions for equations  (137)–(139) are 
nn(0) = 1 and nn(1) = 0, while Nn and ΓB are specified at 
one end only, Nn(1) = 1 and ΓB(0) = 0. The solution of the 
equations, which expresses particle balance with these bound-
ary conditions, thus provides one relation between the param
eters, a relation that can be used to determine the value of one 
eigenvalue. In this set of nonlinear equations, however, both 
T and n0 are unknown. We need another relation between the 
parameters. We may use power balance, equation (32), to fur-
ther determine the discharge variables. For using equation (32), 
we need to know εT(T) [10, 136], which is not easy to evalu-
ate, considering the complex sheath of a magnetized plasma. In 
addition, as mentioned above, it is not clear whether the power 
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provided by the discharge generator is indeed the power depos-
ited in the plasma that should be substituted in equation (32). 
In a helicon plasma source, the increase of power causes jumps 
in the plasma density, reflecting probably a sudden increase in 
the coupling of wave energy and plasma—a coupling that equa-
tion (32) is probably too simple to describe. We therefore prefer 
to examine how specifying the particle flux density at the wall, 
Γ (x = a) (Γmax in equation (32)), affects the discharge, instead 
of how specifying the power density P affects the discharge.

The equation for the neutral density can be replaced by an 
algebraic relation. We use equations (137) and (138) and the 
boundary condition nn(1) = 0 to derive a relation between the 
plasma density and neutral density [85],

Nn =
exp

(
−bein2

n

)
[
1 + beN

√
π/ (4bei) erf

(√
beinn

)] .� (142)

Here, erf  denotes the error function. Neutral depletion is, 
therefore,

D ≡ 1 − Nn(0) = 1 − exp (−bei)[
1 + beN

√
π/ (4bei) erf

(√
bei

)] .

� (143)
Neutral depletion depends on the two parameters, beN  and bei, 
that depend on the plasma density n0, the electron temperature 
T, and the magnetic field ω2

c (with the assumption that all other 
parameters are specified). To express neutral depletion as a 
function of ω2

c only, using equation (143), both n0 and T have 
to be determined.

We note that relations (142) and (143) were derived by use 
of equations (137) and (138), which also hold in cylindrical 
geometry. Therefore, these relations between neutral density 
and plasma density, and the expression for the neutral deple-
tion, are also valid for cylindrical geometry.

We mention again that the following detailed analysis in 
subsections 10.1 and 10.2 can be skipped, and the reader is 
referred to subsection 10.3.

As in [85], we treat two cases of ambipolar flow: one case 
that electrons collide mostly with neutrals, and the other case 
that electrons collide mostly with ions. We start with the case 
of dominant electron–neutral collisions.

10.1. Diffusion induced by electron collisions with neutrals

We assume that electron collisions with neutrals are more  
frequent than electron collisions with ions,

βeNN � βein,� (144)

and approximate νe = βeNN , so that cross-field diffusion 
of the electrons is induced by electron–neutral collisions. 
Equation (142) is simplified to

Nn =
1

1 + beNnn
,� (145)

while neutral depletion becomes

D = DN =
beN

1 + beN
.� (146)

The depletion D is larger for larger beN . From the dependence 
of the neutral depletion D on ω2

c (through beN ); it follows that 
if the magnetic field is increased, while all other parameters 
are left unchanged, beN  decreases; therefore, neutral depletion 
D decreases. These seemingly competitive effects of magn
etic field and of neutral depletion when electron–neutral col
lisions are dominant were pointed out and analyzed in [86]. 
Experiments do not support this prediction. On the contrary, 
experiments seemed to show an increase of neutral depletion 
when the magnetic field was increased [75, 96]. As was also 
mentioned in [86], varying the magnetic field intensity, ωc, is 
likely to cause n0 to vary as well. In fact, in addition, the elec-
tron temperature, and, depending on the experimental condi-
tions, also NW may vary. Therefore, in order to understand 
the effect of the magnetic field on neutral depletion, we need 
to understand the effect of the magnetic field on all discharge 
parameters. We turn to include particle balance in the analysis, 
through the inclusion of the continuity equation, equation (1).

We combine equation (137), (139) and (145), to write the 
following nonlinear diffusion equation,

d
dξ

[
1

(1 + beNnn)

dnn

dξ

]
= −α⊥eN

nn

1 + beNnn
,� (147)

where

α⊥eN ≡ bion

beN
=

meω
2
c a2β

TβeN
.� (148)

Solving equation (147), which expresses particle balance, with 
the boundary conditions nn(0) = 1 and nn(1) = 0, is solving 
an eigenvalue problem. If the value of α⊥eN is specified, the 
value of beN , and also—as a result—the neutral depletion, are 
determined. We thus have to find the relation between these 
two parameters by solving the equation.

We note that for the low depletion case, beN � 1, we 
obtain for our assumed slab geometry the standard solution, 
cos [(π/2) ξ],, and from the boundary conditions, we obtain 
the value of the eigenvalue,

α⊥eN =
meω

2
c a2β

TβeN
=

π2

4
.� (149)

Equation (149) shows that in the low depletion limit, an 
increase of the magnetic field results in a lower β/T , and a 
lower electron temperature T.

We turn to a finite neutral depletion. Equation (147) can be 
integrated to

1
(1 + beNnn)

dnn

dξ
= −

√
2α⊥eN

beN

√
1

1 + beN
− 1

1 + beNnn
+ ln

(
1 + beN

1 + beNnn

)
.

� (150)
Integrating equation (150), and imposing the boundary condi-
tions, nn(0) = 1 and nn(1) = 0, provide a relation between the 
two parameters beN  and bion (or, equivalently, α⊥eN). Figure 12 
is taken from [85]. The solid line in figure 12 shows 

√
α⊥eN  

as a function of d ≡ NW/N0 − 1, which we defined in [85] as 
the neutral depletion. The explicit relation between d and D, 
which we define as neutral depletion in this paper (equation 
(19)), is D = d/(1 + d). The relation between 

√
α⊥eN  and D 

(through d) in figure 12 is informative. It shows that if 
√
α⊥eN  
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is increased, so does the neutral depletion D (or d). Let us 
examine the effect of the magnetic field on the neutral deple-
tion that follows this relation. We note that me, m, a, Nw, Tg, 
βeN and βc are assumed constant as ω2

c or T varies.

10.1.1. Effect of magnetic field on neutral depletion when 
plasma density is specified.  Let us assume, first, that n0 is 
specified and does not vary when ω2

c varies. It is clear that 
when ω2

c is increased, beN  should decrease, because the varia-
tion of T is much smaller than that of ω2

c. Neutral depletion 
thus decreases (with the decrease of beN ). The accompanying 
decrease of 

√
α⊥eN  according to figure 12 in this case must be 

due to a significant decrease of T, such that ω2
cβ/T decreases 

despite the increase of ω2
c. In summary, if the plasma maximal 

density is specified, increasing the magnetic field results in a 
decrease of the electron temperature and a decrease of neutral 
depletion, as was shown in [86].

10.1.2. Effect of magnetic field on neutral depletion when elec-
tron temperature is specified.  Let us assume now that the elec-
tron temperature is specified, and does not vary when ω2

c varies. 
In that case 

√
α⊥eN  is linearly proportional to the magnetic field. 

An increase of the magnetic field results in an increase of beN , 
and consequently in an increase of the neutral depletion DN . The 
plasma density n0 increases at a faster rate than does ω2

c.
So far we saw that an increase of the magnetic field while 

the plasma density is specified results in a decrease of electron 
temperature and neutral depletion, while an increase of the 
magnetic field while the electron temperature is specified results 
in an increase of both the plasma density and neutral depletion.

10.1.3. Effect of magnetic field on neutral depletion when 
plasma particle flux density at the wall is specified.  Since 
mβca/Tg is assumed constant as ω2

c or T varies, specifying Γ 
at the wall also specifies ΓB at the wall, according to equa-
tion (141). In equations (137)–(139) at the limit (144), there 
are two parameters, beN  and bion. Specifying both nn and ΓB at 
both ends, ξ = 0 and ξ = 1, makes the two parameters eigen-
values that are determined by these two pairs of boundary 
conditions, and specifically by ΓB(1). With equation  (137), 
the plasma particle flux density is expressed as

ΓB =
√

2α⊥eN

√
1

1 + beN
− 1

1 + beNnn
+ ln

(
1 + beN

1 + beNnn

)
.

� (151)
The particle flux density at the wall ΓB(1) is

ΓB(1) =
√

2α⊥eN

√
1

1 + beN
− 1 + ln (1 + beN).� (152)

Equation (152) provides a second relation between beN  and 
bion (or, equivalently, α⊥eN). The first relation was obtained 
from the solution of equation (150) with the imposed bound-
ary conditions. The two relations determine the values of the 
two parameters. Once beN  is determined, so is the neutral 
depletion DN . Neutral depletion is therefore determined once 
the plasma particle flux density is specified, and does not vary 
when the magnetic field varies. As beN  and bion are constant for 
a constant ΓB(1), it follows that Tn0/ω

2
c  and βn0 are constant. 

It then follows that ω2
cβ/T is constant. An increase of ω2

c is 
followed by a decrease of β/T , i.e. a decrease of T which is 
followed by an increase of n0. In summary, an increase of the 
magnetic field for a specified plasma particle flux density at 
the wall, is followed by an electron temperature decrease and 
a plasma density increase, while neutral depletion does not 
change.

We note that the dependence of neutral depletion dem-
onstrated in this subsubsection is not surprising, as in equa-
tion (138) the neutral spatial derivative is proportional to the 
particle flux density.

10.2. Diffusion induced by electron collisions with ions

We now analyze the case that electron collisions with ions are 
more frequent than electron collisions with neutrals,

βein � βeNN.� (153)

We approximate νe = βein, so that cross-field diffusion of the 
electrons is induced by electron–ion collisions. We perform 
an analysis equivalent to the analysis in the previous section.

Equation (142) is reduced to the following relation between 
N and n,

Nn = exp
(
−bein2

n

)
.� (154)

The depletion is now expressed as

D = Dei ≡ 1 − exp (−bei) .� (155)

The depletion D is larger for larger bei. From the dependence 
of the neutral depletion D on ω2

c (through bei), it is clear, as in 
the case of dominant electron–neutral collisions, that if the 
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Figure 12.  Magnetized plasma, planar geometry. Ambipolar 
cross-field diffusion induced by electron collisions with neutrals. 
Shown are 

√
α⊥eN  (solid line) and Γmaxa/n0D⊥eN (dashed line) 

as a function of the neutrals depletion, d = D/(1 − D). The 
figure is taken from [85] and the legend for the dashed line is 
according to the notations there (D⊥eN = beNTg/(n0mβc)). At 
D = 0, 

√
α⊥eN = Γmaxa/n0D⊥eN = π/2. For D −→ 1, asymptotic 

expressions are presented in [85]. Reproduced from [85]. © IOP 
Publishing Ltd. All rights reserved.
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magnetic field is increased, while all other parameters are left 
unchanged, bei decreases, i.e. neutral depletion D decreases. 
We continue the analysis as in the previous case (section 
10.1), and we turn to include in the analysis particle balance 
through the inclusion of the continuity equation, equation (1).

Equivalently to the previous case, we derive the following 
nonlinear diffusion equation,

d
dξ

(
nn

dnn

dξ

)
= −α⊥ei exp

(
−bein2

n

)
nn,� (156)

where

α⊥ei ≡
bion

bei
=

meω
2
c a2βNW

Tβein0
.� (157)

Note that the nonlinearity on the LHS of equation (156) is a 
result of dominant electron–ion collisions, and not of neutral 
depletion. This nonlinear equation, when there is no neutral 
depletion (approximating n2

n = 0 in the argument of the expo-
nent on the RHS of the equation), has been solved in [85]. 
Here, we solve the equation with neutral depletion. Before we 
do that we note that equation (156) is an eigenvalue problem, 
and its solution relates the two parameters, α⊥ei and bei, and 
determines the neutral depletion D (through equation (155)), 
once α⊥ei is specified, or additional relation between the two 
parameters is available.

Equation (156) is integrated to

nn
dnn

dξ
= −

√
2α⊥ei

√∫ 1

nn

dn′nn′2
n exp (−bein′2n ).� (158)

Equivalently to the previous subsection, integrating equa-
tion (158) and imposing the boundary conditions, nn(0) = 1 
and nn(1) = 0, provides a relation between the two param
eters bei and bion (or, equivalently, α⊥ei). It is easy to see that 
if 
√
α⊥ei  is increased, so do bei and the neutral depletion D. 

Let us examine also in this case the effect of the magnetic field 
on the neutral depletion that follows this relation. As before, 
note that me, m, a, Nw, Tg, βei and βc are assumed constant as 
ω2

c or T varies.

10.2.1. Effect of magnetic field on neutral depletion when 
plasma density is specified.  We assume again first that 
n0 is specified and does not vary when ω2

c varies. It is seen 
that when ω2

c is increased, both bei and 
√
α⊥ei  decrease. The 

parameter bei decreases because of the increase of ω2
c, while √

α⊥ei  decreases due to the decrease of T that results in a 
decrease of β and an increase of βei (which is proportional to 
T−3/2). In summary, if the plasma maximal density is speci-
fied, increasing the magnetic field results in a decrease of the 
electron temperature and a decrease of neutral depletion, as 
was for dominant electron–neutral collisions.

10.2.2. Effect of magnetic field on neutral depletion when 
electron temperature is specified.  Let us assume now that 
the electron temperature is specified and that it does not vary 
when ω2

c varies. The requirement that 
√
α⊥ei  and bei increase 

together can be fulfilled if n0 grows when ωc grows. It is 
easy to verify that the dependence of n0 on ωc should obey 
0.5 < ∂ ln n0/∂ lnωc < 2.

In summary, if the electron temperature is specified, 
increasing the magnetic field results in an increase of the 
plasma density and of neutral depletion.

10.2.3. Effect of magnetic field on neutral depletion when 
plasma particle flux density at the wall is specified.  Equation 
(138) shows that ΓB (ξ) determines NW − N0, and for speci-
fied NW it determines neutral depletion. It is now examined 
how neutral depletion is determined by ΓB(1). We use equa-
tions (137) and (158) and write an expression for the plasma 
particle flux density,

ΓB = bei

√
2α⊥ei

√∫ 1

nn

dn′
nn′2n exp (−bein′2

n )� (159)

The particle flux density at the wall ΓB(1) is then

ΓB(1) =

√
α⊥ei

√
bei

2

[√
π erf

(√
bei

)
− 2

√
bei exp (−bei)

]
.

�
(160)

Equation (160) provides a second relation between bei and 
bion (or, equivalently, α⊥ei). The first relation was obtained 
from the solution of equation (158) with the imposed bound-
ary conditions. The two relations determine the values of the 
two parameters. Once bei is determined, so is the neutral deple-
tion De. Therefore, once the plasma particle flux density at the 
wall is specified, neutral depletion is determined, and it does 
not vary when the magnetic field varies. As bei and bion are con-
stant for a constant ΓB(1), it follows that Tβein2

0/ω
2
c  and βn0 

are constant as well. As a result ω2
cβ

2/Tβei is also constant. 
As this quantity is constant, an increase of ω2

c is followed by 
a decrease of β2/Tβei , i.e. a decrease of T. A decrease of T is 
followed by an increase of n0, as βn0 is constant.

In summary, as for the case in the previous subsubsec-
tion, an increase of the magnetic field for a specified constant 
plasma particle flux density is followed by an electron temper
ature decrease and a plasma density increase, while neutral 
depletion does not change.

10.3. Numerical examples

We have found that if either electron–neutral collisions or 
electron–ion collisions are dominant, for a specified plasma 
particle flux density at the wall, varying the magnetic field 
intensity should not vary neutral depletion. Here, we solve 
numerically the case that electrons collide with both neu-
trals and ions, for which we have not reached conclusions 
analytically.

Figures 13–17 demonstrate the effect of magnetic field on 
neutral depletion in an argon plasma. No particular regime is 
assumed, and the full equations, Equations  (132), (134), and 
(135), as well as equations (1) and (3), are solved numerically. 
Moreover, the magnetic field is not assumed uniform, and the 
diamagnetic effect is included. Total pressure balance between 
plasma pressure, neutral pressure, and magnetic pressure is 
assumed,

B2

2µ0
+ nT + NTg =

B2
0

2µ0
+ NWTg.� (161)
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The diamagnetic effect is small in these examples. Cases with 
a significant diamagnetic effect have been studied in [114, 
142] for a cylindrical geometry. As throughout most of this 
paper, the geometry is taken here as planar, and in the exam-
ples here the distance between the wall and the central plane 
is a = 0.1 m. In figures 13–15, the maximal plasma density n0 
is specified, while in figures 16 and 17 the particle flux density 
at the wall Γ (x = a) is specified.

In figures 13–15, the neutral pressure at the wall is 2.5 Pa and 
the gas temperature is uniform, Tg = 300 K, so that the neutral 
density at the wall is NW = 6 × 1020 m−3. In figure 13 neu-
tral depletion is presented versus B for two values of maximal 
plasma density, n0 = 5 × 1018 m−3 and n0 = 5 × 1019 m−3. 
For the lower plasma density, n0 = 5 × 1018 m−3, a steady-state 
also exists for an unmagnetized plasma, since for B = 0 the 
plasma pressure is smaller than the neutral pressure at the wall, 
n0T < 2.5 Pa. The neutral depletion D = 1 − N0/NW  is shown 
for this specified plasma density, n0 = 5 × 1018 m−3, versus 
the magnetic field intensity, 0 � B � 600 G. Electron col
lisions with neutrals are comparable in frequency with electron 
collisions with ions, so that none of equations (146) or (155) is 
a good approximation for D. Nevertheless, as described above 
for each regime (dominant electron–neutral or dominant elec-
tron–ion collisions) separately, neutral depletion D decreases 
with B. For the higher plasma density, n0 = 5 × 1019 m−3, the 
minimal magnetic pressure that together with the neutral pres
sure can balance the plasma pressure is for B ≈ 150 G. At such 
a high plasma density electron–ion collisions are dominant. 
The plasma dynamics is well described by equations  (133) 
and (153), and neutral depletion is well approximated by equa-
tion (155), D ∼= De. Neutral depletion decreases with B, as it 
did in the lower magnetic field.

The normalized plasma and neutral density profiles as 
functions of ξ ≡ x/a are shown in figure 14 for the higher of 
the two plasma densities, n0 = 5 × 1019 m−3, for two magn
etic field intensities, B = 150 G and B = 600 G. Neutral 
depletion is almost complete, D ∼= 1, for B = 150 G and is 
smaller, D ∼= 0.4 for B = 600 G, as is also seen in figure 13. 
When neutral depletion is larger, the plasma density is flatter 
than when neutral depletion is smaller.

We define a normalized plasma (and neutral) particle flux 
density at the wall,

Γn ≡ Γ (x = a)
NW

√
Tg/mi

.� (162)

Note that Γn is defined differently here than in equation (27). 
In our example, Γ(x = a) = 1.5 × 1023 m−2 s−1 when 
Γn = 1. Figure  15 shows Γn as a function of the magnetic 
field intensity for the two densities. As the magnetic field is 
increased the plasma confinement is improved, and the flux 
density decreases. The maximal Γn for the higher density is 
0.3 (not shown in the figure).

In figures 16 and 17, the particle flux density at the wall 
is specified. The plasma and neutral steady-state is calcu-
lated for Γn = 0.0025 and for Γn = 0.02. Figure 16 shows 
the neutral depletion D, the maximal plasma density n0 (in 
units of 1019 m−3), and the electron temperature, denoted as 
Te (in eV), as functions of the magnetic field B. Variables 

that correspond to Γn = 0.0025 are denoted by the subscript 
1, while those that correspond to Γn = 0.02 are denoted by 
the subscript 2. It is seen in the figure that the neutral deple-
tion almost does not vary when the magnetic field varies, 
as we showed above separately for each collisional regime. 
For Γn = 0.0025 the neutral depletion is about D = 0.20, 
while for Γn = 0.020, it is about D = 0.77. In figure 17, the 
profiles of the dimensionless plasma and neutral densities 
are shown for the two plasma particle flux densities. The 
plasma density is flatter for Γn = 0.02, when neutral deple-
tion is larger. The density profiles do not vary when the 
magnetic field varies, as long as the plasma particle flux 
density Γn does not vary. This result is not shown in the 
figures.

As mentioned above, neutral depletion in magnetized 
plasma was measured in [75, 96], and it seemed to increase 
when the magnetic field was increased. Magee et  al [96] 
repeated their experiment when there was no flowing gas or 
flowing plasma in the (helicon) source. Neutral depletion 
did not increase, in that case, when the magnetic field was 
increased. It could be that the conditions in the experiment 
in [96] with no flow had similarity to the case analyzed here, 
where the magnetic field was increased but the plasma parti-
cle flux density at the wall did not change. In the experiment 
with a flowing plasma in [96], and probably also in the experi-
ment in [75], experiments that showed an increase of neutral 
depletion when magnetic field was increased, the plasma 
particle flux density could have increased with the increasing 
magnetic field, which could have led to that increased neutral 
depletion. It could also be that plasma motion along the magn
etic field, neglected in the analysis here, played a role in the 
experiments in [75, 96].

10.4. Suppressed diamagnetism

Recent measurements by Shinohara et al showed that the 
diamagnetic effect in a magnetized plasma was smaller than 
expected [114]. It was realized that the plasma pressure in 
a magnetized partially-ionized plasma is balanced by both 
magnetic field pressure and neutral pressure. Neutral pressure 
is expressed by the first term on the RHS of equation (132), 

Figure 13.  Magnetized plasma, planar geometry. Neutrals depletion 
D = 1 − N0/NW  as a function of the magnetic field intensity B, 
for n0 = 5 × 1018 m−3 and for n0 = 5 × 1019 m−3. An argon 
plasma of neutrals pressure at the wall of 2.5 Pa and Tg = 300 K 
(NW = 6 × 1020 m−3), a = 0.1 m. For the higher density shown 
also Dei (equation (155)), which is a good approximation for D.
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while the magnetic pressure is expressed by the second term 
on the RHS. It was shown in [114] that if

C ≡ e2B2

mmeνeνi
< 1,� (163)

diamagnetism is expected to be suppressed by neutral deple-
tion. In that case, most of the plasma pressure is balanced 
by neutral pressure, and not by the magnetic pressure. Here, 
νi ≡ βcN  is the frequency of ion–neutral collisions. Note that 
C is not necessarily uniform across the discharge.

Figure 18, taken from [114], shows the measured decrease 
of magnetic field (the diamagnetism) as a function of B. It is 
shown that for a low B, the diamagnetic effect is lower than 
expected by the plasma beta. The parameter C at this regime 
is smaller than unity. Indeed, a solution of the model equa-
tions of this section in a cylindrical geometry that calculates 
the profile of B is in reasonable agreement with the measure-
ment, and explains the suppressed diamagnetism. A detailed 
theoretical analysis is given in [142].

11.  Flowing plasma

In many systems of interest there is a net mass flow. Neutrals 
are injected at one end of the discharge chamber, and a mix-
ture of neutral and ionized gases flows out of the discharge 
chamber at the other end. Such configurations are used for 
industrial applications and for plasma thrusters. Helicon 
sources considered for propulsion [115–133] are one exam-
ple of such a system with a net mass flow. When the heli-
con magnetic field is large, so that wall losses are small, a 
1D model as in this paper can describe the flow dynamics 
approximately. This description is useful for the helicon 
plasma source itself, while where the magnetic field diverges 
beyond the source exit, a different model has to be used. The 
1D analysis of the flowing plasma here follows [77] for a 
collisionless flow, with some results from [90] included for 
a collisional flow.

In the case of a net mass flow, the flow is not symmetrical 
with respect to the plane at the center of the discharge (for a 
slab geometry). The end of the channel at which the gas enters 
is denoted as x = 0, and the end at which the plasma–neu-
tral flow exits is denoted as x = L = 2a. The neutral density 
decreases along the channel,

Figure 14.  Magnetized plasma. The normalized plasma and 
neutrals density profiles as functions of ξ ≡ x/a for B = 150 G 
and B = 600 G; n0 = 5 × 1019 m−3. As in figure 13, an argon 
plasma, neutrals pressure at the wall of 2.5 Pa and Tg = 300 K 
(NW = 6 × 1020 m−3), a = 0.1 m. Neutrals depletion is almost 
complete for B = 150 G and is smaller for B = 600 G. When 
neutrals depletion is larger, the plasma density is flatter near the 
discharge center than when neutrals depletion is smaller.

Figure 15.  Magnetized plasma, planar geometry. The normalized 
plasma particle flux density at the wall Γn versus the magnetic field 
intensity B for n0 = 5 × 1018 m−3 and for n0 = 5 × 1019 m−3. 
An argon plasma, pressure at the wall 2.5 Pa and Tg = 300 K 
(NW = 6 × 1020 m−3), a = 0.1 m. The maximal Γn for the higher 
density is 0.3 (not shown).

Figure 16.  Magnetized plasma, planar geometry. Neutrals depletion 
D, the maximal plasma density n0 (in units of 1019 m−3), and the 
electron temperature Te (in eV) versus the magnetic field B, for 
Γn = 0.0025 (subscript 1) and for Γn = 0.02 (subscript 2). An 
argon plasma, the pressure at the wall 2.5 Pa and Tg = 300 K 
(NW = 6 × 1020 m−3), a = 0.1 m. D1 ∼= 0.20, D2 ∼= 0.77.

Figure 17.  Magnetized plasma, planar geometry. The normalized 
plasma and neutrals density profiles as functions of ξ ≡ x/a 
for Γn = 0.0025 (n0 = 2 × 1019 m−3) and for Γn = 0.02 
(n0 = 6.1 × 1019 m−3). The plasma density profile is flatter near the 
discharge center for Γn = 0.02, when neutrals depletion is larger. 
An argon plasma, the pressure at the wall 2.5 Pa and Tg = 300 K 
(NW = 6 × 1020 m−3), a = 0.1 m. The density profiles do not vary 
when the magnetic field varies, as long as the particle flux density 
Γn does not vary. Here, B = 400 G.
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dN
dx

< 0.� (164)

It is assumed that the gas is introduced through holes in a 
wall that is located at x = 0. Therefore, neutrals move only 
in the positive x direction, away from the back wall. Ions and 
electrons that impinge on the back wall recombine, and the 
neutrals produced join the neutral flow in the positive x direc-
tion, as in the case of a non-flowing plasma. Ions are assumed 
collisionless, so that equation (31) becomes

(
1 − M2) dM

dx
=

βN
c

(
1 + M2) .� (165)

As we did before, we can relate the (assumed uniform) elec-
tron temperature to the total number of neutrals per unit area. 
Despite the asymmetry of the flow, ions are still assumed 
to reach the acoustic velocity at the two chamber ends. We 
first relate the number of neutrals to the ion Mach velocity. 
Equation (165) is integrated to

c
β

(
2 arctanM − M +

π

2

)
=

∫ x

0
Ndx.� (166)

Integrating across the discharge chamber, we find the rela-
tion between the total number of neutrals per unit area and the 
electron temperature,

1.1416
c
β

= NT =

∫ L

0
Ndx,� (167)

which is identical to equation (30) in the collisionless limit.
It is easily seen how neutral depletion in the flowing plasma 

causes the maximum of the plasma density to move towards 
the gas inlet end, at x = 0. The integral in equation (166) is 
split into two integrals:

0.5708
c
β

=
c
β

∫ 0

−1

(
1 − M2

)
(1 + M2)

dM =

∫ x0

0
Ndx =

∫ L

x0

Ndx.

� (168)

Since the neutral density decreases away from x = 0, the 
neutral density in the integral of the third term in equa-
tion (168) is larger than the neutral density in the integral 
of the fourth term. The two integrals can be equal only if 
the interval of integration of the third term is shorter than 
the interval of integration of the fourth term. The result is 
that the location of the maximal density x0, where M = 0, 
satisfies

x0 < a.� (169)

Thus, due to neutral depletion, the location of the maximal 
plasma density shifts from the center of the discharge towards 
the gas inlet. As neutral depletion increases, so that the neu-
tral density decreases everywhere away from the gas inlet, the 
location of the maximal plasma density, x0, gets closer to the 
gas inlet end at x = 0.

Let us now specify the neutral dynamics. As in section 7, 
we assume that the neutral are monoenergetic. However, 
instead of the two monoenergetic beams flowing in oppo-
site directions of the bounded plasma analyzed there, here, 
the neutrals constitute one monoenergetic beam only, flowing 
towards the exit. The neutral–gas distribution function at the 
gas-inlet is of the form

fN(v) = N0δ (v − va) ,� (170)

where N0 is the neutral density at the gas-inlet upstream. We 
write the net mass flow rate as

Γ + Nva = Γm ≡ ṁ
Srm

,� (171)

where Γm, the particle (neutral plus plasma) flux-density, is 
expressed as the ratio of ṁ , the mass flow rate, and the product 
of m and Sr, the channel cross-section. Since we assume that 
va is uniform in the channel, equation  (171) determines the 
value of the varying neutral density N along the channel as a 
function of the varying ion flux density Γ. The neutral density 
is therefore:

N =
1
va

(Γm − Γ) .� (172)

At the collisionless limit, equation (24) becomes

Γ =
n0cM

(1 + M2)
.� (173)

These two last relations and equation (165) become

(
1 − M2) dM

dx
=

1
λion

(
M2 + 1 − 2ηmM

)
,� (174)

where

ηm ≡ Γ (x = L)
Γm

; λion ≡ vac
βΓm

.� (175)

The ratio ηm is the propellant utilization and 
Γ (x = L) = Γmax = n0c/2 is the ion flux density at the gas 
exit from the source. Also, λion is a characteristic ionization 
mean free path of the plasma flow.

The last equation can be integrated to

Figure 18.  Measurements of the diamagnetic effect in a helicon 
source. The measured ∆B/B is much smaller than expected by 
the plasma beta but agrees with a model (of cylindrical geometry) 
that includes neutrals depletion. Reprinted from [114], with the 
permission of AIP Publishing.
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− 1 − M − ηm ln

(
M2 + 1 − 2ηmM

2 + 2ηm

)

+ 2
√

1 − η2
m

[
arctan

(
M − ηm√

1 − η2
m

)
− arctan

(
−1 − ηm√

1 − η2
m

)]
=

x
λion

,

� (176)
which satisfies M = −1 at x = 0. Requiring that M = 1 at 
x = L, we obtain

−2 − ηm ln

(
1 − ηm

1 + ηm

)
+ 2

√
1 − η2

m

[
arctan

(
1 − ηm√
1 − η2

m

)

− arctan

(
−1 − ηm√

1 − η2
m

)]
=

L
λion

.

�

(177)

The propellant utilization is determined by L/λion, the num-
ber of ionization mean free paths along the channel. We can 
now write the profile of the ion flow velocity as

Figure 19.  Flowing plasma. The profiles of the normalized 
plasma and neutral-gas densities in argon. The collisionality is 
low, βc/β = 0.1351, and T = 7 eV. The propellant utilization is 
ηm = 0.8553 and the profile of the plasma density is asymmetrical, 
due to neutrals depletion by ionization. The gas inlet is on the left 
and the exit, which is the open boundary, is on the right. © 2011 
IEEE. Reprinted, with permission, from [90]. z/a denotes x/L  in 
this paper. For the legend see [90].

−1 − M − ηm ln
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−2 − ηm ln
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1−η2
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−1−ηm√

1−η2
m

)] =
x
L
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�

(178)

We define the rate of neutral depletion in this case of a net 
mass flow as

D ≡ 1 − N (x = L)
N (x = 0)

.� (179)

Since N (x = 0) va = ṁ/Srm − Γ(0), N (x = L) va = 
ṁ/Srm − Γ (L) and Γ(0) = −Γ (L) we obtain

D =
2ηm

1 + ηm
.� (180)

At the limit of low ionization, equation (177) yields

π − 2 =
L
λion

=
βNL

c
, ηm � 1.� (181)

Here N is the constant neutral density.
At the opposite limit of large neutral depletion,

ηm = 1 − 2 exp
[
−
(

2 +
L
λion

)]
,� (182)

which is a slightly modified form of equation (66) in [77]. At 
that limit, the neutral depletion is

D = 1 − exp

[
−
(

2 +
L
λion

)]
.� (183)

The collisionless case detailed here was described in [77]. 
The analysis was generalized for a plasma flow with ion–neu-
tral collisions in [90]. The collisions were treated not as raising 
the neutral temperature, rather at the limit of neutral pump-
ing, similarly to that described in section 8. The argon-plasma 
flow described in figure 19 (taken from [90]), is of a relatively 
high electron temperature, T = 7 eV. For this T, β is large and 
βc/β = 0.1351. In such a low ion–neutral collisionality plasma, 
the profiles obtained by calculations with ion-neutral collisions 
are described approximately by the analytical expressions given 
above when collisions are neglected. In this numerical example 
L /λion is large, so that the propellant utilization is close to unity, 
ηm = 0.8553. Neutral depletion is high, D = 0.922, and, as a 
result, the asymmetry of the plasma density profile is large. Since 
the plasma is approximately collisionless, the plasma density at 
the two ends of the discharge is about half the maximal density.

While ion pumping, as described in section 7, dominates 
the flow analyzed above and demonstrated in figure 19, neu-
tral pumping, as described in section 8, dominates the flow 
demonstrated in figure  20. In figure  20, T = 1.9 eV and 
βc/β = 129 in an argon plasma. The propellant utilization is 
low, ηm = 0.0073. However, due to collisions, the neutral flow 
is also composed of energetic neutrals, and an equivalent pro-
pellant utilization is defined, ηmc, that expresses the fraction 
of pushed neutrals, which is large in figure  20, ηmc = 0.95. 
The plasma density profile is asymmetrical when neutrals are 

depleted through collisions, due to neutral pumping, equiva-
lently to ion pumping as shown in figure 20. The analysis is 
detailed in [90].

The asymmetry of the profile of the plasma density has 
been demonstrated experimentally [83, 109, 111, 128]. 
The evolution in time of the plasma density, the profile 
changing from symmetrical to asymmetrical profile due to 
neutral depletion, has been recently demonstrated exper
imentally [111].
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12.  Summary

In this paper, we have reviewed the coupled plasma-neutral 
dynamics in a partially-ionized plasma. The neutral density 
profile modified by the interaction with the plasma and the 
change of the plasma density due to the modified neutral den-
sity were studied for various different neutral dynamics. The 
nonlinear interaction led to neutral depletion, a reduced neu-
tral density at the center of the discharge chamber, where the 
plasma density is maximal.

We mention here the main results described in this paper. In 
a collisional plasma, neutral depletion is due to plasma pres
sure, a process we called neutral pumping. In such collisional 
plasma, when the plasma particle flux density is large (due to 
large ionization), an increase of the deposited power results 
in an unexpected decrease of the plasma density, despite the 
increase of the flux of generated plasma. The mechanism that 
causes the density decrease was shown to be the enhanced 
plasma transport due to neutral depletion. The nonmonotonic 
dependence was shown using semi-analytic expressions for 
a planar geometry, and numerically for cylindrical geometry.

Neutral depletion due to neutral-gas heating was then 
analysed. It was shown that gas heating can enhance neutral 
depletion dramatically. The gas heating was assumed to be 
due to electron–neutral collisions, and to be balanced by heat 
conduction to the wall. For a low ionization, the gas temper
ature increases with the plasma flux, and causes significant 
neutral depletion, even though the plasma pressure is still 
much smaller than the neutral-gas pressure. As ionization 
increases, the neutral-gas temperature starts to decrease. Thus, 
the gas temperature was shown to also vary nonmonotonically 
with the plasma particle flux density.

Neutral depletion due to ionization in a collisionless 
plasma—ion pumping—was described by a simple formal-
ism. A similar formalism was adopted to describe neutral 

pumping in a plasma in which the number of collisions is 
small, a situation that could be explored for plasma thrust-
ers. It was determined that it is not likely that the necessary 
conditions for the occurrence of neutral repletion can be sat-
isfied. Therefore it looks as though neutral repletion cannot 
occur.

The effect of the magnetic field on neutral depletion in 
plasma in which cross-field diffusion is dominant was exam-
ined. It was found that neutral depletion does not vary with the 
magnetic field as long as the plasma particle flux is kept con-
stant, while neutral depletion does decrease with the magnetic 
field, if it is the plasma density that is kept constant. Cases 
were identified in which neutral depletion suppresses plasma 
diamagnetism.

Flowing plasma in a configuration of a plasma thruster 
was studied. Conditions for high ionization (or large neutral 
depletion) were determined through an analytical solution 
that could be useful also for plasma thrusters. The analysis 
should be extended to address other devices such as negative 
ion sources [91–93, 103, 104].

In order to demonstrate the various forms of neutral deple-
tion, we chose the simplest geometry that often allowed us 
to derive analytical results. In experiments the geometry is 
naturally more complex, 1D and time independent models are 
often not sufficient. By illuminating the basic processes, we 
hope that the models presented here could guide more com-
plex numerical calculations.
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